On the Feasibility of Large-Scale Infections of iOS Devices


While Apple iOS has gained increasing attention from attackers due to its rising popularity, very few large scale infections of iOS devices have been discovered because of iOS’ advanced security architecture. In this paper, we show that infecting a large number of iOS devices through botnets is feasible. By exploiting design flaws and weaknesses in the iTunes syncing process, the device provisioning process, and in file storage, we demonstrate that a compromised computer can be instructed to install Apple-signed malicious apps on a connected iOS device, replace existing apps with attacker-signed malicious apps, and steal private data (e.g., Facebook and Gmail app cookies) from an iOS device. By analyzing DNS queries generated from more than half a million anonymized IP addresses in known botnets, we measure that on average, 23% of bot IP addresses demonstrate iOS device existence and Windows iTunes purchases, implying that 23% of bots will eventually have connections with iOS devices, thus making a large scale infection feasible.

In Proceedings of the 23rd USENIX Security Symposium (Security)
Yeongjin Jang
Yeongjin Jang
Assistant Professor of Computer Science

My research interests include cybersecurity/hacking, automated vulnerability discovery/analysis, secure system design, and applied cryptography.