
QSYM: A Practical Concolic Execution Engine
Tailored for Hybrid Fuzzing

Insu Yun† Sangho Lee† Meng Xu† Yeongjin Jang∗ Taesoo Kim†

† Georgia Institute of Technology
∗ Oregon State University

Abstract
Recently, hybrid fuzzing has been proposed to address
the limitations of fuzzing and concolic execution by com-
bining both approaches. The hybrid approach has shown
its effectiveness in various synthetic benchmarks such as
DARPA Cyber Grand Challenge (CGC) binaries, but it
still suffers from scaling to find bugs in complex, real-
world software. We observed that the performance bottle-
neck of the existing concolic executor is the main limiting
factor for its adoption beyond a small-scale study.

To overcome this problem, we design a fast concolic
execution engine, called QSYM, to support hybrid fuzzing.
The key idea is to tightly integrate the symbolic emulation
with the native execution using dynamic binary transla-
tion, making it possible to implement more fine-grained,
so faster, instruction-level symbolic emulation. Addition-
ally, QSYM loosens the strict soundness requirements of
conventional concolic executors for better performance,
yet takes advantage of a faster fuzzer for validation, pro-
viding unprecedented opportunities for performance op-
timizations, e.g., optimistically solving constraints and
pruning uninteresting basic blocks.

Our evaluation shows that QSYM does not just out-
perform state-of-the-art fuzzers (i.e., found 14× more
bugs than VUzzer in the LAVA-M dataset, and outper-
formed Driller in 104 binaries out of 126), but also found
13 previously unknown security bugs in eight real-world
programs like Dropbox Lepton, ffmpeg, and OpenJPEG,
which have already been intensively tested by the state-
of-the-art fuzzers, AFL and OSS-Fuzz.

1 Introduction

The computer science community has developed two no-
table technologies to automatically find vulnerabilities
in software: namely, coverage-guided fuzzing [1–3] and
concolic execution [4, 5]. Fuzzing can quickly explore
the input space at nearly native speed, but it is only good

Figure 1: Newly found line coverage of popular open-source
software by state-of-the-art concolic executors, Driller and S2E,
and our system, QSYM, until they saturated. We used five test
cases in each project that have the largest code coverage. Test
cases generated by QSYM cover significantly more lines than
both concolic executors. In libtiff, Driller could not generate
any test case due to incomplete modeling for mmap().

at discovering inputs that lead to an execution path with
loose branch conditions, such as x > 0. On the contrary,
concolic execution is good at finding inputs that drive the
program into tight and complex branch conditions, such
as x == 0xdeadbeef, but it is very expensive and slow to
formulate these constraints and to solve them.

To take advantage of both worlds, a hybrid approach [6–
8], called hybrid fuzzing, was recently proposed. It com-
bines both fuzzing and concolic execution, with the hope
that the fuzzer will quickly explore trivial input spaces
(i.e., loose conditions) and the concolic execution will
solve the complex branches (i.e., tight conditions). For
example, Driller [8] demonstrates its effectiveness of the
hybrid fuzzing in the DARPA Cyber Grand Challenge
(CGC) binaries—generating six new crashing inputs out
of 126 binaries that are not possible when running either
fuzzing or concolic execution alone.

Unfortunately, these hybrid fuzzers still suffer from
scaling to find real bugs in non-trivial, real-world applica-
tions. We observed that the performance bottlenecks of
their concolic executors are the main limiting factor that
deters their adoption beyond the synthetic benchmarks.

Unlike the promise made by concolic executors, they fail
to scale to real-world applications: the symbolic emu-
lation is too slow in formulating path constraints (e.g.,
libjpeg and libpng in Figure 1) or it is often not even pos-
sible to generate these constraints (e.g., libtiff and file in
Figure 1) due to the incomplete and erroneous environ-
ment models (Table 4).

In this paper, we systematically analyze the perfor-
mance bottlenecks of concolic execution and then over-
come the problem by tailoring the concolic executor to
support hybrid fuzzing (§2). The key idea is to tightly
integrate the symbolic emulation to the native execution
using dynamic binary translation. Such an approach pro-
vides unprecedented opportunities to implement more
fine-grained, instruction-level symbolic emulation that
can minimize the use of expensive symbolic execution
(§3.1). Unlike our approach, current concolic executors
employ coarse-grained, basic-block-level taint tracking
and symbolic emulation, which incur non-negligible over-
heads to the concolic execution.

Additionally, we alleviate the strict soundness require-
ments of conventional concolic executors to achieve better
performance as well as to make it scalable to real-world
programs. Such incompleteness or unsoundness of con-
straints is not a problem in a hybrid fuzzer where a co-
running fuzzer can quickly validate the newly generated
test cases; the fuzzer can quickly discard them if they
are invalid. Moreover, this approach makes it possible
to implement a few practical techniques to generate new
test cases, i.e., by optimistically solving some parts of
constraints (§3.2), and to improve the performance, i.e.,
by pruning uninteresting basic blocks (§3.3). These new
techniques and optimizations together allow QSYM to
scale to test real-world programs.

Our evaluation shows that the hybrid fuzzer, QSYM,
—built on top of our concolic executor, and the state-of-
the-art fuzzer, AFL—outperforms all existing fuzzers
like Driller [8] and VUzzer [9]. QSYM achieved signifi-
cantly better code coverage than Driller in 104 out of 126
DARPA CGC binaries (tied in five challenges). Further,
QSYM discovered 1,368 bugs out of 2,265 bugs in the
LAVA-M test set [10], whereas VUzzer found 95 bugs.

More importantly, QSYM scales to testing complex
real-world applications. It has found 13 previously un-
known vulnerabilities in eight non-trivial programs, in-
cluding ffmpeg and OpenJPEG. It is worth noting that
these programs have been thoroughly tested by other state-
of-the-art fuzzers such as AFL and OSS-Fuzz, highlight-
ing the effectiveness of our concolic executor. OSS-Fuzz
running on a distributed fuzzing infrastructure with hun-
dreds of servers [11] was unable to find these bugs, but
QSYM found them by using a single workstation. For
further research, we open-source the prototype of QSYM
at https://github.com/sslab-gatech/qsym.

This paper makes the following contributions:
• Fast concolic execution through efficient emula-

tion. We improved the performance of concolic
execution by optimizing emulation speed and reduc-
ing emulation usage. Our analysis identified that
symbol generation emulation was the major perfor-
mance bottleneck of concolic execution such that we
resolved it with instruction-level selective symbolic
execution, advanced constraints optimization tech-
niques, and tied symbolic and concolic executions.

• Efficient repetitive testing and concrete environ-
ment. The efficiency of QSYM makes re-execution-
based repetitive testing and the concrete execution
of external environments practical. Because of this,
QSYM is free from snapshots incurring significant
performance degradation and incomplete environ-
ment models resulting in incorrect symbolic execu-
tion due to its non-reusable nature.

• New heuristics for hybrid fuzzing. We proposed
new heuristics tailored for hybrid fuzzing to solve
unsatisfiable paths optimistically and to prune out
compute-intensive back blocks, thereby making
QSYM proceed.

• Real-world bugs. A QSYM-based hybrid fuzzer
outperformed state-of-the-art automatic bug finding
tools (e.g., Driller and VUzzer) in the DARPA CGC
and LAVA test sets. Further, QSYM discovered 13
new bugs in eight real-world software. We believe
these results clearly demonstrate the effectiveness of
QSYM.

The rest of this paper is organized as follows. §2
analyzes the performance bottleneck of current hybrid
fuzzing. §3 and §4 depict the design and implementation
of QSYM, respectively. §5 evaluates QSYM with bench-
marks, test sets, and real-world test cases. §7 explains
QSYM’s limitations and possible solutions. §8 introduces
related work. §9 concludes this paper.

2 Motivation: Performance Bottlenecks

In this section, we systematically analyze the performance
bottlenecks of the conventional concolic executor used
for hybrid fuzzers. The following are the main reasons
that block the adoption of hybrid fuzzers to the real world
beyond a small-scale study.

2.1 P1. Slow Symbolic Emulation
The emulation layer in conventional concolic executors
that handles symbolic memory model is extremely slow,
resulting in a significant slowdown in overall concolic
execution. This is surprising because the community be-
lieves that symbolic and concolic executions are slow due
to path explosion and constraint solving. Table 1 shows

https://github.com/sslab-gatech/qsym

Executor chksum md5sum sha1sum md5sum(mosml)

Native 0.008 0.014 0.014 0.001
KLEE 26.243 32.212 73.675 0.285
angr - - - 462.418

Table 1: The emulation overhead of KLEE and angr compared
to native execution, which are underlying symbolic executors
of S2E and Driller, respectively. We used chksum, md5sum, and
sha1sum in coreutils to test KLEE, and md5sum (mosml) [12]
to test angr because angr does not support the fadvise syscall,
which is used in the coreutils applications.

this significant overhead in symbolic emulation when we
execute several programs without branching out to the
other paths (no path explosion) or solving constraints on
the path in widely-used symbolic executors, KLEE and
angr. Compared to the native execution, KLEE is around
3,000 times slower and angr is more than 321,000 times
slower, which are significant.

Why is symbolic emulation so slow? In our analysis,
we observed that the current design of concolic execu-
tors, particularly adopting IR in their symbolic emulation,
makes the emulation slow. Existing concolic executors
adopt IR to reduce their implementation complexity a lot;
however, this sacrifices the performance. Additionally,
optimizations that speed up this use of IR prohibit further
optimization opportunities, particularly by translating the
program into IRs in a basic-block granularity. This de-
sign does not allow skipping the emulation that does not
involve in symbolic execution instruction by instruction.
We describe the details of these in the following.

Why IR: IR makes emulator implementation easy.
Existing symbolic emulators translate a machine instruc-
tion to one or more IR instructions before emulating the
execution. This is mainly to make the implementation
of symbolic modeling easy. To model symbolic mem-
ory, the emulator needs to interpret how an instruction
affects the symbolic memory status when supplied with
symbolic operands. Unfortunately, interpreting each ma-
chine instruction is a massive task. For instance, the most
popular Intel 64-bit instruction set architecture (i.e., the
amd64 ISA) contains 1,795 instructions [13] described in
a 2,000-page manual [14]. Moreover, the amd64 ISA is
not machine-interpretable, so human effort is required to
interpret each instruction for its symbolic semantic.

To reduce this massive complexity in implementation,
existing emulators have adopted the IR. For example,
KLEE uses the LLVM IR and angr uses the VEX IR.
These IRs have much smaller sets of instructions (e.g., 62
for the LLVM IR [15]) and are simpler than native instruc-
tions. Consequently, the use of IR significantly reduces
the implementation complexity because the emulator will
have a much smaller number of interpretation handlers
than when it directly works with machine instructions

Figure 2: The number of instructions in symbolic basic blocks
and the number of symbolic instructions in popular open-source
software. More than half of the instructions in the basic blocks
are not symbolic instructions, which can be executed natively.

(e.g., 1,795 versus 62).

Why not: IR incurs additional overhead. Despite
making implementation easy, the use of IR incurs over-
head in symbolic emulation. First, the IR translation
itself adds overhead. Because the amd64 architecture is
a complex instruction set computer (CISC), whereas the
IRs model a reduced instruction set computer (RISC), in
most cases, a translation of a machine instruction results
in multiple IR instructions. For instance, based on our
evaluation, the VEX IR [16], used by angr, increases the
number of instructions by 4.69 times on average (versus
machine instructions) in the CGC binaries, resulting in
much symbolic emulation handling.

Why not: IR blocks further optimization. Second,
using IR prohibits further optimization opportunities. For
example, existing symbolic emulators have an optimiza-
tion strategy that minimizes the use of emulation because
it is slow. Particularly, they do not execute a basic block in
the emulator if the block does not deal with any symbolic
variables. Although this effectively cuts off the overhead,
it still has room for optimization. According to our mea-
surement with the real-world software (Figure 2), such
as libjpeg, libpng, libtiff, and file, only 30% of instruc-
tions in symbolic basic blocks require symbolic execution.
This implies that an instruction-level approach has an op-
portunity to reduce the number of unnecessary symbolic
executions. However, current concolic executors cannot
easily adopt this approach due to IR caching. To use IR,
they need to convert native instructions into IR, which
has significant overhead. To avoid repetitive overhead,
they transform and cache basic blocks into IRs, instead of
individual instructions, to save space and time for cache
management. This caching forces existing symbolic em-
ulators to execute instructions in a basic block level and
prevent further optimization.

Our approach. Remove the IR translation layer and
pay for the implementation complexity to reduce exe-
cution overhead and to further optimize towards the
minimal use of symbolic emulation.

2.2 P2. Ineffective Snapshot

Why snapshot: eliminating re-execution overhead.
Conventional concolic execution engines use snapshot
techniques to reduce the overhead of re-executing a target
program when exploring its multiple paths. The snapshot
mechanism is also mandatory for hybrid fuzzing whose
concolic re-execution is significantly slow, such as Driller.
For example, we measured the code coverage by turning
off the snapshot mechanism in Driller with 126 CGC bi-
naries and given proof of vulnerabilities (PoVs) as initial
seed files. As a result, Driller with snapshot achieved
more code coverage in 76 binaries, but without snapshot
achieved more code coverage in only 17 binaries, and
others are the same.
Why not: fuzzing input does not share a common
branch. Snapshots in hybrid fuzzing are not effective be-
cause concolic executions in hybrid fuzzing merely share
a common branch. In particular, for conventional concolic
engines, a snapshot is taken when the engine splits the
path exploration from one conditional branch (i.e., the
taken and untaken paths). The main purpose of taking
a snapshot is to reuse a symbolic program state when
exploring both paths at the same branch. In this regard,
the engine backs up the symbolic state of the program
in one branch, and then explores one of the paths (e.g.,
the taken path). When the path is exhausted or stuck, the
engine restores the symbolic state to the previous state at
the branch and moves to another path (i.e., the untaken
path). The engine can explore the path without paying
overhead for re-executing the program to the branch.

On the contrary, the concolic execution engine in hy-
brid fuzzing fetches multiple test cases from the fuzzer
with which they are associated different paths of the pro-
gram (i.e., sharing no common branch). This is because
random mutation generates such test cases. This could
1) lead the program to a different code path or 2) con-
cretize values differently on handling symbolic memory
access [17]. Therefore, snapshots taken from one test case
path cannot be re-used in the other test case path such that
they do not optimize the performance.
Why not: snapshot cannot reflect external status.
Worse yet, the snapshot mechanism becomes problem-
atic in supporting external environments since it breaks
process boundaries. Supporting external environments
is required since the program heavily interacts with the
external environment during its execution. Such inter-
actions include the use of a file system and a memory
management system, and these would be able to change
the symbolic status of the program. When a program is be-
ing executed, it does not consider external environments
since the underlying kernel maintains internal states re-
lated to them. Unfortunately, the snapshot mechanism
breaks the assumption that the kernel holds: when a pro-

cess diverges through fork()-like system calls, the kernel
no longer maintains the states. Thus, concolic execution
engines should maintain the states by itself.

Existing tools try to solve this problem through either
full system concolic execution or external environment
modeling, but they result in significant performance slow-
down and inaccurate testing, respectively.
Full system concolic execution. Concolic testing tools
such as S2E apply concolic execution for both the target
program and the external environment. Although this
approach ensures completeness and correctness, the tools
cannot test the program in a reasonable time because
conventional concolic executors are too slow and the com-
plexity of the external environment is high. Moreover, a
full system concolic execution requires expensive state
backup and recovery. This overhead could be mitigated
by copy-on-write under normal circumstances, but it is
not applicable for hybrid fuzzing due to its non-shareable
nature.
External environment modeling. Hybrid fuzzers, such
as Driller, model or emulate the execution in the exter-
nal environment. This approach has clear performance
benefits by avoiding concolic execution, but it results in
inaccurate models because it is almost impossible to com-
pletely and correctly model all system calls in practice.
For example, Linux kernel 2.6 has 337 system calls, but
angr only supports 22 system calls out of them. Further,
despite excessive efforts of the developers, angr models
many functions incompletely, such as mmap(). The cur-
rent implementation of mmap() in angr ignores a valid
file descriptor given to the function. It just returns empty
memory instead of memory containing the file content.

Our approach. Optimize repetitive concolic testing,
remove the snapshot mechanism that is inefficient in
hybrid fuzzing, and use concrete execution to model
external environments.

2.3 P3. Slow and Inflexible Sound Analysis

Why sound analysis? Concolic execution tries to guar-
antee soundness by collecting complete constraints. This
completeness assures that an input satisfying the con-
straints will lead the execution to the expected path. Thus,
concolic execution can produce inputs to explore other
paths of a program without worrying about false expecta-
tions.
Why not: never-ending analysis for complex logic.
However, computing complete constraints could be ex-
pensive in various situations. In particular, computing the
constraints for complex operations such as cryptographic
functions or compression is often problematic. The upper
part of Figure 3 shows a code snippet of the file program.
If concolic execution visits file_zmagic(), it sticks there

1 // @funcs.c:221 in file v5.6
2 if ((ms->flags & MAGIC_NO_CHECK_COMPRESS) == 0) {
3 m = file_zmagic(ms, &b, inname); // zlib decompress
4 ...
5 }
6

7 // other interesting code

1 // @funcs.c:177 in file v5.6
2 // looks_ascii()
3 if (ch >= 0x20 && ch < 0x7f)
4 ...
5 // file_tryelf()
6 if (ch == 0x7f)
7 ...

Figure 3: The first example shows that collecting complete con-
straints for complicated routines such as file_zmagic() could
prohibit finding new paths. The second example shows that if
a given concrete input follows a true path of looks_ascii(), it
over-constrains the path not to find a true path of file_tryelf().

to compute complex constraints for zlib decompression
and cannot search other interesting code.
Why not: sound analysis could over-constraint a path.
The complete constraints can also over-constrain [5] a
path that limits concolic execution to find future paths.
In particular, a constraint that is inserted to follow the
native execution can cause the over-constraint problem.
In the lower code of Figure 3, if ch is defined as ‘A’ by a
given concrete input, concolic execution will put the con-
straint, {ch >= 0x20 ∧ ch < 0x7f}, at looks_ascii()
because the native execution will execute the true branch
of the if statement. When it arrives at file_tryelf(),
the concolic execution cannot generate any test case
because the final constraint is unsatisfiable, which is
{ch >= 0x20 ∧ ch < 0x7f ∧ ch == 0x7f}. However,
if file_tryelf() does not depend on the true branch
of looks_ascii(), this is the over-constraint problem be-
cause an input generated by concolic execution without
caring about the path constraint, ch == 0x7f, will explore
a path in file_tryelf().

Our approach. Collect an incomplete set of con-
straints for efficiency and solve only a portion of con-
straints if a path is overly-constrained.

3 Design

In this section, we explain our design decisions to re-
alize QSYM. Figure 4 shows an overview of QSYM’s
architecture. QSYM aims at achieving fast concolic ex-
ecution by reducing the efforts in symbolic emulation,
which is the major performance bottleneck of existing
concolic executors. To this end, QSYM first instruments
and then runs a target program utilizing Dynamic Binary
Translation (DBT) along with an input test case provided
by a coverage-guided fuzzer. The DBT produces basic
blocks for native execution and prunes them for symbolic

Dynamic Binary
Translation (e.g., pin)

Fuzzer
(e.g., afl)

Concolic executor

Target
program binary

Pruning Basic Blocks
(§3.3)

Eliminating Unrelated
Constraints (§3.1)

Optimistic Solving
(§3.2)

Basic blocks
to be executed

Native
execution

Inst-level Executor
(§3.1)

Concrete Env. Modeling
(§3.1)

Symbolic emulation Constraint solving

Input
test cases

Output test cases potentially
exploring new paths

Figure 4: Overview of QSYM’s architecture as a hybrid fuzzer.
QSYM takes a test case and a target binary as inputs and attempts
to generate new test cases that might explore new paths. It uses
Dynamic Binary Translation (DBT) to natively execute the input
binary as well as to select basic blocks for symbolic execution.
Since QSYM applies various heuristics to trade strict soundness
for better performance in constraint solving, the new test cases
will be validated later by the fuzzer.

execution, allowing us to quickly switch between two exe-
cution models. Then, QSYM selectively emulates only the
instructions necessary to generate symbolic constraints,
unlike existing approaches that emulate all instructions
in the tainted basic blocks. By doing this, QSYM reduced
the number of symbolic emulations by a significant mag-
nitude (5×, see Figure 10 in §5.3) and hence achieved a
faster execution speed. Thanks to its efficient execution,
QSYM can execute symbolic execution repeatedly instead
of using snapshots that require external environment mod-
eling. In particular, QSYM can interact with the external
environment in a concrete fashion instead of relying on
the contrived environment models. To improve the per-
formance of constraint solving, QSYM applies various
heuristics that trade off strict soundness for better per-
formance. Such a relaxation provides an unprecedented
opportunity to the concolic executor for a hybrid fuzzer, in
which the paired-up fuzzer can quickly validate the newly
produced test cases—it will simply discard them if they
are not interesting. The rest of this section describes our
approaches to scale the concolic executor for the hybrid
fuzzer to test real-world programs.

3.1 Taming Concolic Executor

We explain in detail four new techniques to optimize the
concolic executor for the hybrid fuzzer.
Instruction-level symbolic execution. QSYM symboli-
cally executes a small set of instructions that are required
to generate symbolic constraints. Unlike existing con-
colic executors, which apply a block-level taint analy-
sis and so symbolically execute all instructions in the
tainted basic blocks, QSYM employs an instruction-level
taint tracking and symbolic execution on the tainted in-
structions. The existing concolic executors take such a
coarse-grained approach because they suffer from high

// If rdx (size) is symbolic
__memset_sse2:
 movd xmm0,esi
 mov rax,rdi
 punpcklbw xmm0,xmm0
 punpcklwd xmm0,xmm0
 pshufd xmm0,xmm0,0x0
 cmp rdx,0x40
 ja __memset_sse2+80

def _op_generic_InterleaveLO(self, args):
 s = self._vector_size
 c = self._vector_count
 left_vector = [args[0][(i+1)*s-1:i*s]
 for i in xrange(c/2)]
 right_vector = [args[1][(i+1)*s-1:i*s]
 for i in xrange(c/2)]
 return claripy.Concat(*itertools.chain.from_iterable(
 reversed(zip(left_vector, right_vector))))

Figure 5: An example that shows the effect of instruction-level
symbolic execution. If a size is symbolic at __memset_sse2(),
the instruction-level symbolic execution only executes symbolic
instructions, which are in the dashed box. However, the basic-
block-level one needs to execute other instructions that can be
executed natively, including punpcklwd, which is complex to
handle as shown in the right-side angr code.

1 # create user
userone
1 # create user
usertwo
2 # login
userone
1 # send message

Initial PoV

1 # create user
userone
1 # create user
usertwo
2 # login
userone
4 # delete message

Qsym

1 # create user
\xfb\xfb\xfb\xfb\xf4\xf1\xf1
1 # create user
\xfb\xfb\xfb\xfb\x0b\xfb\xf1
2 # login
\xfb\xfb\xfb\xfb\xf4\xf1\xf1
4 # delete message
 Driller

Figure 6: The test cases generated by QSYM and Driller that
explore the same code path from the same seed. They are
different because QSYM uses unrelated constraint elimination
as their underlying optimization techniques whereas Driller
uses incremental solving. Unrelated constraint elimination can
remove unnecessary constraints, for example, constraints for the
user names, on the existence of a concrete input.

performance overheads when switching between native
and symbolic executions. However, for QSYM, the effi-
cient DBT makes it possible to implement a fine-grained,
instruction-level taint tracking and symbolic execution,
helping us to avoid unnecessary emulation overheads.

This method significantly improves the performance of
QSYM’s symbolic execution in practice. Take memset()
as an example (Figure 5), where only its size parameter
(rdx) is tainted. Unlike a block-level approach, such as
angr, that should symbolically execute all instructions,
QSYM can generate symbolic constraints by executing
only the last two instructions. This problem is more
critical in real-world problems where modern compilers
produce highly optimized code to minimize control-flow
changes (e.g., using a conditional move like cmov). For ex-
ample, in angr, any symbolic arguments to the memset()
can prevent its symbolic execution because memset() re-
lies on complex instructions like punpcklbw.

QSYM runs both native and symbolic executions in a
single process by utilizing the DBT, making such mode
switches extremely lightweight (i.e., a normal function
call). It is worth noting that this approach is drastically
different from most of the existing concolic engines, such
as angr, where two execution modes should make non-
trivial communications such as updating memory maps to
make a mode switch. Accordingly, many optimizations
made by angr are to reduce such mode switching, e.g.,
striving to run one mode as long as possible.

Solving only relevant constraints. QSYM solves con-

straints relevant to the target branch that it attempts to
flip, and generates new test cases by applying the solved
constraints to the original input. Unlike QSYM, other
concolic executors such as S2E and Driller incrementally
solve constraints; that is, they focus on solving the up-
dated parts of constraints in the current run by utilizing
lemmas learned from the previous execution. For pure
symbolic executors that do not have any initial inputs for
exploration, this incremental approach is effective in enu-
merating all possible input spaces [18]. However, this is
not a favorable design for hybrid fuzzers for the following
two reasons.

First, the incremental approach in hybrid fuzzers re-
peatedly solves the constraints that are explored by other
test cases. For example, Figure 6 shows an initial test case
and new test cases generated by QSYM and Driller when
exploring the same code paths: the red marker shows the
differences between the original input and the generated
test cases. By solving only constraints relevant to the
branch (i.e., selecting a menu for deleting a message),
QSYM generates the new test case by updating a small
part of the initial input. However, Driller generates new
test cases that look drastically different from the original
input. This indicates that Driller wastes time on solving
irrelevant constraints that are repeatedly tested by fuzzers
(e.g., constraints on usernames).

Second, the incremental approach is effective only
when complete constraints are provided. Unfortunately,
due to the emulation overheads, existing concolic execu-
tors cannot formulate symbolic constraints for complex,
real-world programs. However, focusing only on relevant
constraints gives us a higher chance to solve the con-
straints and produce new test cases that potentially take
different code paths. For example, the test cases that are
only relevant to the command menu will not be affected
by the incomplete constraints generated for usernames
(Figure 6). Moreover, due to its environment support
(§3.1) or various heuristics (§3.2, §3.3), QSYM tends to
generate more relaxed (i.e., incomplete) forms of con-
straints that can be easily solved. This makes QSYM scale
enough to test real-world programs.
Preferring re-execution to snapshoting. QSYM’s fast
concolic execution makes re-execution much preferable
to taking a snapshot for repetitive concolic testing. The
snapshot approach, which creates an image of a target
process and reuses it later, is chosen to overcome the
performance bottleneck of the concolic execution; re-
executing a program to reach a certain execution path
with a valid state can take much longer than restoring the
corresponding snapshot. However, as QSYM’s concolic
executor becomes faster, the overhead of the snapshotting
is no longer smaller than that of re-execution.
Concrete external environment. QSYM avoids prob-
lems resulting from an incomplete or erroneous modeling

of external environments by concretely interacting with
external environments. Since the incompleteness and in-
correctness of modeling deviate symbolic execution and
native execution and mislead additional exploration, we
should avoid them for further analysis. Instead of these er-
roneous models, QSYM considers external environments
as “black-boxes” and simply executes them by concrete
values. This is a common way to handle functions that
cannot be emulated in symbolic execution [4, 19], but
it is difficult to apply to forking-based symbolic execu-
tion, which breaks process boundaries [20]. Since QSYM
can achieve performance without introducing forking-
based symbolic execution [21], QSYM can utilize the old
but complete technique to support external environments.
However, this approach can result in unsound test cases
that do not produce any new coverage, unlike its claim.
If QSYM blindly believes concolic execution, QSYM will
waste its resources to explore paths using test cases that do
not introduce any new coverage. To alleviate this, QSYM
relies on a fuzzer to quickly check and discard the test
cases to stop further analysis.

3.2 Optimistic Solving

Concolic execution is susceptible to over-constraint prob-
lems in which a target branch is associated with compli-
cated constraints generated in the current execution path
(Figure 3). This problem is prevalent in real-world pro-
grams, but existing solvers give up too early (i.e., timeout)
without trying to utilize the generated constraints, which
took most of their execution time (Figure 10). In hybrid
fuzzing, a symbolic solver’s role is to assist a fuzzer to
get over simple obstacles (e.g., narrow-ranged constraints
like {ch == 0x7f} in Figure 3) and go deeper in the pro-
gram’s logic. Thus, as a hybrid fuzzer, it is well justified
to formulate potentially new test inputs, regardless of
reaching unexplored code via the current path or other
paths.

QSYM strives to generate interesting new test cases
from the generated constraints by optimistically selecting
and solving some portion of the constraints, if not solvable
as a whole. As the emulation overheads dominate the
overheads of constraint solving in complex programs, it
economically makes sense to leverage this opportunity.
In particular, QSYM chooses the last constraint of a path
for optimistic solving for the two following reasons. First,
it typically has a very simple form, making it efficient
for constraints solving. Another candidate would be the
complement of unsat_core, which is the smallest set
of constraints that introduces unsatisfiability. However,
computing unsat_core is very expensive and sometimes
crashes the underlying constraint solver [22]. Second,
test cases generated from solving the last constraint likely
explore the target path as they at least meet the local

constraints when reaching the target branch. Since QSYM
first eliminates constraints that are not related to the last
constraint, all irrelevant constraints do not impact the
result of the optimistic solving.

3.3 Basic Block Pruning

We observed that constraints repetitively generated by
the same code are not useful for finding new code cover-
age in real-world software. In particular, the constraints
generated by compute-intensive operations in a program
are unlikely solvable (i.e., non-linear) at the end even if
their constraints are formulated. Even worse, they tend to
block the possibility of exploring other parts that are not
relevant yet are interesting enough for further exploration.
For example, in the second example of Figure 3, even
though concolic execution produces constraints for the
zlib decompression, a constraint solver will not be able
to solve the constraints because of their complexity [23].

To mitigate this problem, QSYM attempts to detect
repetitive basic blocks and then prunes them for symbolic
execution and generates only a subset of constraints. More
specifically, QSYM measures the frequency of each basic
block execution at runtime and selects repetitive blocks to
prune. If a basic block has been executed too frequently,
QSYM stops generating further constraints from it. One
exception is when a block contains constant instructions
that do not introduce any new symbolic expressions, e.g.,
mov instructions in the x86 architecture and shifting or
masking instructions with a constant.

QSYM decides to use exponential back-off to prune
basic blocks since it rapidly truncates overly frequent
blocks. It only executes blocks whose frequency number
is a power of two. However, if it excessively prunes basic
blocks, it could miss some of the solvable paths and thus
could fail to discover new paths. To this end, QSYM builds
two heuristic approaches to prevent excessive pruning:
grouping multiple executions and context-sensitivity.

Grouping multiple executions is a knob that minimizes
excessive pruning of basic blocks. When we count the
frequency of a basic block’s execution, we regard a group
of executions as one in frequency counting. For instance,
suppose the group size is eight. Then, only after executing
the block eight times, we count the frequency as one. This
will allow QSYM to execute the block eight times once it
decided not to prune. This helps not to lose constraints
that are essential to discover a new path and also does not
affect much on the symbolic execution because running
such basic blocks a small number of times would not
make the constraints too complex.

Context-sensitivity acts as a tool for distinguishing
running the same basic block in a different context for
frequency counting. If we do not distinguish a con-
text (i.e., at which point is this basic block called?), we

Component Lines of code

Concolic execution core 12,528 LoC of C++
Expression generation 1,913 LoC of C++
System call abstraction 1,577 LoC of C++
Hybrid fuzzing 565 LoC of Python

Table 2: QSYM’s main components and their lines of code.

may lose essential constraints by pruning more blocks.
For example, when there are two strcmp() calls, say
strcmp(buf, “GOOD”) and strcmp(buf, “EVIL”), these
two calls must be considered as a different basic block ex-
ecution for frequency counting. Otherwise, the execution
of the same block in the other part of the program, which
is irrelevant to the current execution, could affect pruning.
QSYM maintains a call stack of the current execution, and
uses a hash of it to differentiate distinct contexts.

4 Implementation

We implement the concolic executor from scratch. QSYM
consists of 16K lines of code (LoC) in total, and Table 2
summarizes the complexity of each of its components.
QSYM relies on Intel Pin [24] for DBT, and its core com-
ponents are implemented as Pin plugins written in C++:
12K LoC for the concolic execution core, 1.9K LoC for
expression generation, and 1.5K LoC for handling sys-
tem calls. QSYM also exposes Python APIs (0.5K LoC)
such that users can easily extend the concolic executor;
the hybrid fuzzer is built as a showcase using these APIs.
QSYM uses libdft [25] in handling system calls while
adding support for the 64-bit environments. The current
implementation of QSYM supports part of Intel 64-bit
instructions that are essential for vulnerability discovery
such as arithmetic, bitwise, logical, and AVX instructions.
QSYM will be open-sourced and support different types
of instructions, including floating point instructions in the
future.

5 Evaluation

To evaluate QSYM, this section attempts to answer the
following questions:
• Scaling to real-world programs. How effective

is QSYM’s approach in discovering new bugs and
achieving better code coverage when fuzzing com-
plex, real-world software? (§5.1, §5.2)

• Justifying design decisions. How effective are the
design decisions made by QSYM in terms of bug
finding? (§5.3, §5.4, §5.5)

1. Instruction-level symbolic execution. How
effective is our fine-grained, instruction-level
symbolic execution in terms of the number of

instructions saved and the overall performance
of the hybrid fuzzer? (§5.3)

2. Optimistic constraints solving. How reason-
able is QSYM’s optimistic constraints solving
in terms of finding bugs? (§5.4)

3. Pruning basic blocks. How effective is our
approach to prune basic blocks in terms of the
overall performance and code coverage? (§5.5)

Experimental setup. We ran all the following experi-
ments on Ubuntu 14.04 LTS equipped with Intel Xeon
E7-4820 (having eight 2.0GHz cores) and 256 GB RAM.
We used three cores respectively for master AFL, slave
AFL, and QSYM for end-to-end evaluations (§5.1, §5.2,
and §5.4) and one core for testing concolic execution only
(§5.3 and §5.5). Even though we used a server machine
with many cores, we did not exploit all cores to run QSYM,
but we aimed to run multiple experiments concurrently.

5.1 Scaling to Real-world Software
QSYM’s approach scales to complex, real-world software.
To highlight the effectiveness of our concolic execution
engine, we applied QSYM to non-trivial programs that
are not just large in size but also well-tested by the state-
of-the-art fuzzer for a longer period of time. Thus, we
considered all applications and libraries tested by OSS-
Fuzz as ideal candidates for QSYM: libjpeg, libpng, libtiff,
lepton, openjpeg, tcpdump, file, libarchive, audiofile, ffm-
peg, and binutils. Among them, QSYM was able to detect
13 previously unknown bugs in eight programs and li-
braries, including stack and heap overflows, and NULL
dereferences (as shown in Table 3). It is worth noting
that Google’s OSS-Fuzz generated 10 trillion test inputs a
day [28] for a few months to fuzz these applications, but
QSYM ran them for three hours using a single workstation.
In other words, all the bugs found by QSYM require the
accurate formulation of inputs to trigger, showing the ef-
fectiveness of our concolic executor. §6 provides in-depth
analysis of some of the bugs that QSYM found.

Compared to QSYM, other hybrid fuzzers are not scal-
able to support these real-world applications. We tested
Driller, a known state-of-the-art hybrid fuzzer, for compar-
ison. For testing purpose, we modified Driller to accept
file input because these applications receive input from
files, while the original Driller accepts only the standard
input. We followed the direction of Driller’s authors for
this modification. As a result, Driller was able to generate
only a few test cases due to its slow emulation. Driller gen-
erated less than 10 test cases on average for 30 minutes of
running, whereas QSYM generated hundreds (more than
10×) of test cases in the same duration. Moreover, Driller
was not able to support 5 out of 11 applications for lack
of environment modelings and system call supports as
shown in Table 4.

Program CVE Bug Type Fuzzer Fail (Fuzzer) Fail (Hybrid)

lepton CVE-2017-8891 Out-of-bounds read AFL Meet complex constraints Explore deep code paths
openjpeg CVE-2017-12878 Heap overflow OSS-Fuzz Meet complex constraints Support external environments

Fixed by other patch NULL dereference
tcpdump CVE-2017-11543⋆ Heap overflow AFL Find where to change∗ Support external environments
file CVE-2017-1000249⋆ Stack overflow OSS-Fuzz Meet complex constraints Explore deep code paths
libarchive Wait for patch NULL dereference OSS-Fuzz Meet complex constraints Support external environments
audiofile CVE-2017-6836 Heap overflow AFL Multi-bytes magic values Explore deep code paths

Wait for patch Heap overflow × 3
Wait for patch Memory leak

ffmpeg CVE-2017-17081 Out-of-bounds read OSS-Fuzz Meet complex constraints Support external environments
objdump CVE-2017-17080 Out-of-bounds read AFL Meet complex constraints Explore deep code paths

Table 3: Bugs found by QSYM and known fuzzers that are previously used to fuzz the binaries, and the reason they cannot be
detected by the existing fuzzer and hybrid fuzzer. CVE-2017-11543⋆ and CVE-2017-1000249⋆ are concurrently found by QSYM

before being patched [26, 27]. The failure of the fuzzer in the tcpdump bug marked by ∗ is not crucial since a fuzzer also can find the
bug, but in our experiment, QSYM found the bug 3 hours earlier than pure fuzzing.

Program Bug Type Syscall

libtiff Erroneous system calls mmap

openjpeg Unsupported system calls set_robust_list

tcpdump Erroneous system calls mmap

libarchive Unsupported system calls fcntl

ffmpeg Unsupported system calls rt_sigaction

Table 4: Incomplete or incorrect system call handling by Driller
that prohibits from applying Driller to real-world software.
Driller’s mmap() had an error: it ignored a file descriptor. We
detected these errors dynamically using basic test cases in each
project. Therefore, other incorrect or unsupported system calls
could exist in unexplored paths.

5.2 Code Coverage Effectiveness
To show how effectively our concolic executor can assist
a fuzzer in discovering new code paths, we measured
the achieved code coverage during the fuzzing process
by using QSYM (a hybrid fuzzer) and AFL (a fuzzer)
with a varying number of input seed files. We selected
libpng as a fuzzing target because it contained various
narrow-ranged checks (e.g., checking the 4-byte magic
value for chunk identification) that were non-trivial to
satisfy without proper seeding inputs in the fuzzing-only
approach. As seeding inputs, we collected high-quality
(i.e., including various types of chunks) 141 PNG image
files from the libpng project and incrementally (by 20%)
applied to the fuzzers. For the 0% case, we provided a
dummy ASCII file containing 256 ‘A’s as a seeding input
as both fuzzers required at least one input to begin with.
For fair comparisons with the fuzzing-only approach, we
prepared a hybrid fuzzer consisting of one master and one
slave AFL instance with QSYM, and a fuzzer consisting
of one master and two slave AFL instances so that both
fuzzers utilized the same computing resources given the
execution time. We ran both fuzzers for six hours and
measured the explored code coverage.

The hybrid fuzzing approach was particularly effective
in discovering new code paths when no or limited initial

Figure 7: Code coverage of libpng after a six-hour run of QSYM

and AFL (two AFL instances for a fair comparison) with an
increasing number of seeding inputs. In the 0% case, we put an
invalid PNG file consisting of 256 ‘A’s as an initial input. The
100% case includes 141 sample PNG image files provided by
the libpng project. This experiment result highlights the effec-
tiveness of code coverage that the concolic execution approach
contributes to hybrid fuzzing, depending on the availability of
quality seeding inputs.

inputs were provided (Figure 7). In the 0% case (only
with a dummy input), AFL did not make much progress
as libpng checked the PNG header identifier in an early
phase of execution. On the contrary, QSYM not only
formulated and solved the constraints for checking the
PNG’s magic header identifier but also explored more
than 20% of code paths of libpng, which was 3% higher
than the code coverage of fuzzing with valid images, i.e.,
the 20% AFL case. Even when enough seeding inputs
were provided, the concolic executor still allowed fuzzers
to find more interesting paths. For example, the hIST
chunk was not included in any of the 141 test cases, but
QSYM was able to successfully generate new test cases
by solving the symbolic constraints. It is worth noting
that the hIST chunk needs to satisfy complex pre- and
post-conditions to be a valid chunk in PNG: the hIST
chunk should come after the PLTE chunk but before the
IDAT chunk [29]. This example also hints at the difficulty
of constructing complete test cases that cover all the fea-

Figure 8: This color map depicts the relative code coverage for
five minutes that compares QSYM’s with Driller’s: the blue color
means that QSYM found more code than Driller, and the red
color means the opposite (see §5.3 for the exact formula). Each
cell represents each CGC challenge in alphabetical order (from
left to right and top to bottom). QSYM outperforms Driller
in discovering new code paths; QSYM results in better code
coverage in 104 challenges (82.5% cases) and Driller does better
in 18 challenges (14.3% cases) out of 126.

tures implemented in software, where we believe QSYM’s
approach can shed some light on.

5.3 Fast Symbolic Emulation
To show the performance benefits of QSYM’s symbolic
emulation, we used the DARPA CGC dataset [30] to
compare QSYM with Driller, which placed third in the
CGC competition [8]. The CGC dataset included a wide
range of programs from simple login services to sophis-
ticated programs that attempt to mimic real-world proto-
cols. CGC has released 131 challenge programs used in
the CGC qualification event with PoVs—the inputs that
trigger the vulnerabilities of the target program. Among
the 131 challenge programs, we ignored five programs
requiring Inter-Process Communication (IPC) that both
QSYM and Driller did not support. We chose the PoVs as
initial seed inputs because challenge writers intentionally
hid bugs in the deep code path, so that PoVs tend to have
good code coverage. To make our analysis simpler, we
selected the first PoV (only one) as a seeding input for
both fuzzers.

To show the fuzzing result, we used the code coverage
that we measured from all the test cases generated while
fuzzing each CGC challenge. Since the CGC programs
did not support libgcov, a de-facto standard tool to mea-
sure code coverage, we used the AFL bitmap [31] instead
to indicate their code coverage. The AFL bitmap consists
of 65,536 entries to represent code coverage, which is
reasonable enough for our comparison purpose.

Since the direct comparison of simple code coverage
numbers might not properly indicate which fuzzer ex-
plored more and different code paths, we relatively com-
pared their code coverage (see below). Additionally, we

Figure 9: Comparing QSYM (5-min timeout) with Driller while
increasing the time for constraints solving (from 5-min to 30-
min). It shows that the reason Driller could not generate new
test cases is not due to the limited time budget for solving the
generated constraints.

removed the bitmap entries that are already covered by
initial PoVs for a fair comparison of newly explored paths.
Based on this, we used the following formula to compare
and visualize both coverage results relatively. For code
coverage A (QSYM) and B (Driller), we can quantify the
coverage differences by using:

d(A,B) =

{ |A−B|−|B−A|
|(A∪B)−(A∩B)| if A ̸= B

0 otherwise

It intuitively represents how many more unique paths that
A explored out of the total discrete paths that only either A
or B explored. For example, if QSYM found more unique
paths than Driller, d(A,B) will render a positive number,
and it will be 1.0 when QSYM not only found more paths
than Driller, but also covered all the paths that Driller
found.

Figure 8 visualizes the results of the CGC code cov-
erage for five minutes. Each cell represents each CGC
challenge we tested in alphabetical order (from left to
right and top to bottom). For example, the top-most left
cell represents CROMU_00001 and the bottom-most right
cell represents YAN01_00012. The blue color represents
the cases in which QSYM resulted in better code coverage,
and the red color represents the ones that Driller did better.
The darkest colors indicate that one fuzzer dominated the
code coverage of another.

QSYM outperforms Driller in terms of code cover-
age; QSYM explored more code paths in 104 challenges
(82.5%) out of 126 challenges, whereas Driller did better
only in 18 challenges (14.3%). More importantly, QSYM
fully dominated Driller in 37 challenges, where QSYM
also covered all paths explored by Driller. It is worth
noting that increasing the timeout for Driller (i.g., giving
more time for constraints solving) does not help to im-
prove the result of the code coverage. To show this, we
ran Driller with varying timeouts from 5 to 30 minutes
while fixing the timeout of QSYM to 5 minutes (Figure 9).
Even with the 30-min timeout of Driller, QSYM explored
more paths in 98 out of 126 binaries, whereas Driller’s

Figure 10: Average time breakdown of QSYM and Driller for
126 CGC binaries with initial PoVs as initial seed files, and the
number of instructions that are executed symbolically. ‘Norm’
is the product of the number of instructions of QSYM and the
average rate of increase of VEX IR, 4.69.

coverage map was more or less saturated after the 10-min
of the timeout.

Instruction-level symbolic execution. To understand
how QSYM achieves a better performance than Driller, we
break down the performance factors of QSYM and Driller.
At a high level, Driller spent 27% of its execution time
for creating snapshots and 70% for symbolic emulation
(see, Figure 10(a)) In other words, Driller spent 2× more
time than QSYM for concolic execution, but most of its
time was spent for emulation and snapshot.

The instruction-level symbolic execution implemented
in QSYM played a major role in speeding up the symbolic
emulation. One way to demonstrate the effectiveness of
this technique is to measure the number of instructions
symbolically executed by both systems. However, QSYM
and Driller took a different notion of symbolic instruc-
tions, making it hard to compare both directly: QSYM
uses the native x86 instructions, whereas Driller uses VEX
IR for symbolic execution. Instead of counting and com-
paring the symbolically executed instructions, we took
the amplification factor (i.e., 4.69) into consideration, the
conversion rate from x86 to VEX IR when lifting all CGC
binaries to use VEX IR. Even with this amplification fac-
tor (assuming an instruction in amd64 is equivalent to 4.69
instructions), QSYM executed only 1/5 of instructions
symbolically when compared with Driller. Moreover,
QSYM’s fast emulator helps us eliminate the ineffective
snapshot mechanism. All these improvements applied to-
gether make constraints solving another important factor
for the overall performance of the concolic execution.
Further case analysis. We could find several tendencies
from further investigation of the results:
1) QSYM explores more paths than Driller in large pro-
grams and with long PoVs (i.e., in exploring deeper path).
For example, QSYM covers more code coverage than
Driller in NRFIN_00039, whose binary size is the largest
among the challenges, about 12 MB. Moreover, QSYM
can find test cases that cover code deep in the binaries.
For example, CROMU_00001 is a service that can send mes-
sages between users. To read a message, an attacker

Challenge Not emulated Total

NRFIN_00026 4 (0.02 %) 24,315
NRFIN_00032 4 (0.00 %) 4,784,433
CROMU_00016 18 (0.06 %) 31,988
KPRCA_00045 25 (0.00 %) 81,920,092
KPRCA_00009 27 (0.23 %) 11,512
NRFIN_00027 178 (0.73 %) 24,449
CROMU_00028 1,154 (0.01 %) 18,626,977
CROMU_00010 1,467 (0.18 %) 811,819
CROMU_00020 3,492 (11.15 %) 31,306
KPRCA_00013 4,589 (0.02 %) 18,746,620
CROMU_00002 14,977 (3.92 %) 381,793
NRFIN_00021 18,821 (33.26 %) 56,583
KPRCA_00029 31,800 (0.16 %) 19,604,258

Table 5: The number of instructions in the CGC challenges that
are not emulated due to the limitation of QSYM: no floating
point operation supports.

should go through the following process: (1) create a new
user (user1), (2) create another user (user2), (3) log in as
user1, (4) send a message to user2, (5) logout, (6) log in
as user2, and (7) read a message by sending a message id
to read. QSYM reaches the 7th step that reads a message
and generates test cases in the function, but Driller fails to
reach the function. This shows that QSYM’s efficient sym-
bolic emulation is effective in discovering sophisticated
bugs hidden deeper in the program’s path.
2) With a limited time budget (5 to 30 minutes), Driller
gets more coverage in applications with multiple nested
branches within quickly reachable paths (i.e., shallow
paths) because its snapshot mechanism is optimized for
this case. Due to its slow emulation, Driller can search
only the branches close to the start of a program in a
limited time (5 to 30 minutes). When Driller reaches a
nested branch (i.e., a chunked multiple cmp instructions),
Driller can fully leverage its snapshot to quickly explore
these branches without involving re-execution. In con-
trast, QSYM should re-execute the emulation with a newly
generated input to reach to the next branch. However,
QSYM can gradually find the path via re-execution, and
this exploration will be efficient since the branches are
also easily reachable by QSYM.

Incomplete emulation. Currently, QSYM does not com-
pletely emulate all instructions (e.g., it cannot emulate
floating point operations with symbolic operands), so that
one can think that its performance improvement is due
to non-emulated instructions. To refute this hypothesis,
we measured the number of instructions that were not
emulated by QSYM (Table 5). Note that only 13 binaries
out of 126 binaries have at least one instruction that is
not handled by QSYM. Moreover, only three of them
have not-emulated instructions that are more than 1% of
their total instructions. Thus, we conclude that the perfor-
mance improvement was not due to the incompleteness of
QSYM’s instruction modeling but to our instruction-level

Figure 11: The cumulative number of bugs found in the LAVA dataset with or without optimistic solving by time.

Figure 12: Time elapsed for optimistic solving and the number of unique bugs found in the LAVA dataset in a single execution
of QSYM with an initial test case according to the number of constraints in optimistic solving. The minus symbol (–) represents
the absence of optimistic solving; therefore, its elapsed time is zero in every case. Opt is our optimistic solving that only uses the
last constraint in an execution path, and the number after the plus symbol (+) represents the number of additional constraints used
for optimistic solving. For example, +1 represents that QSYM uses one additional constraint; therefore, it uses two constraints for
optimistic solving, the last one and the additional one. The graph shows that our decision uses the last constraint helps QSYM find
the most bugs while spending less time.

uniq base64 md5sum who

FUZZER 7 (25 %) 7 (16 %) 2 (4 %) 0 (0 %)
SES 0 (0 %) 9 (21 %) 0 (0 %) 18 (39 %)
VUzzer (R) 27 (96 %) 1 (2 %) 0 (0 %) 23 (1 %)
VUzzer (P) 27 (96 %) 17 (39 %) 0 (0 %) 50 (2 %)
QSYM 28 (100 %) 44 (100 %) 57 (100 %) 1,238 (58 %)

Total 28 44 57 2,136

Table 6: The number of bugs found by existing techniques
and QSYM in the LAVA-M dataset. VUzzer (R) represents
the number of bugs that are found by VUzzer in our machine
settings, and VUzzer (P) represents the number of bugs in the
VUzzer paper.

symbolic execution.

5.4 Optimistic Solving
To evaluate the effect of optimistic solving, we compared
QSYM with others using the LAVA dataset [10]. LAVA is
a test suite that injects hard-to-find bugs in Linux utilities
to evaluate bug-finding techniques, so the test is adequate
for demonstrating the fitness of the technique. LAVA
consists of two datasets, LAVA-1 and LAVA-M, and we
decided to use LAVA-M consisting of four buggy pro-
grams, file, base64, md5sum and who, which have been
used for testing other systems such as VUzzer. We ran
QSYM with and without the optimistic solving on the
LAVA-M dataset for five hours, which is the test duration
set by the original LAVA work [10]. To identify unique
bugs, we used built-in bug identifiers provided by the

LAVA project.
The optimistic solving helps QSYM find more bugs by

relaxing over-constrained variables. Figure 11 shows the
cumulative number of unique bugs found by QSYM with
or without optimistic solving. In all test cases, running
QSYM with optimistic solving supersedes the run without
it by finding more bugs even at an early stage (within
three minutes). This result supports our design hypothesis
that relaxing overly constrained variables would benefit
path exploration, and fuzzing will assist this well to prun-
ing out false-positive cases due to missing constraints.
Take an example in base64; the program decodes an input
string using a table lookup (i.e., table[input[0]]) and
further comparisons will be restricted by that concrete
value. In such a case, concolic execution concretizes the
entire symbolic constraints to the current input because
the table lookup over-constrains input symbols to have
only one solution that is identical to an initial test case.
Therefore, without optimistic solving, although QSYM
arrived at branches that must pass to trigger crashes, con-
straint solver will return unsatisfiability. However, with
the optimistic solving, even if the constraint is unsatis-
fiable, the solver will solve only the last constraint and
generate a potential crash input, which helps fuzzer move
forward if this optimistic speculation is correct.

We also compared QSYM with other state-of-the-art
systems; QSYM outperformed them (Table 6). At first,
we tested VUzzer [9] in our environment. However, our
results were either equal (in md5sum and uniq) or worse (in
base64 and who) than the original paper’s results because

Figure 13: Total newly found coverage and elapsed time for
libjpeg, libpng, libtiff, and file with five seed files, except for
libjpeg, which has only four files, that have the largest code
coverage in each project.

our workstation has slow cores (2.0GHz). Instead, we
decided to borrow the original results. We also borrowed
the other results from the evaluation of LAVA [9] due to
its anonymized testing systems. In Table 6, FUZZER rep-
resents the results of a coverage-oriented fuzzer and SES
represents the results of the symbolic execution. QSYM
found 14× more bugs than VUzzer and any other prior
techniques in the LAVA-M dataset.

To evaluate our decision for optimistic solving that uses
only the last constraint among constraints in an execution
path, we measured the elapsed time and the number of
bugs found in the LAVA-M dataset while changing the
number of additional constraints. When we include ad-
ditional constraints, we chose constraints in the order in
which they were recently added. We used a single execu-
tion with the initial test case given by the dataset author
instead of end-to-end evaluation to limit the impact by
fuzzing. The results are shown in Figure 12. QSYM with
optimistic solving always found more bugs than QSYM
without optimistic solving. However, considering addi-
tional constraints did not help find more bugs and just
increased solving time in most cases. In certain cases,
adding more constraints can reduce the time required for
optimistic solving. This is not surprising since adding
more constraints might help to decide unsatisfiability.

5.5 Pruning Basic Blocks

To show the effect of the basic block pruning, we eval-
uated this technique with four widely-used open-source
programs, namely, libjpeg, libpng, libtiff, and file. We
chose five seed test cases that exhibit the largest code cov-
erage (libjpeg has only four test cases so used just four)
from each project. We ran QSYM with 5-min timeout for
running concolic execution per each test case (19 cases
in total, 5-min timeout for each test case, and up to 95
minutes) and then measured execution time and newly
found code coverage.

Figure 13 shows that basic block pruning not only re-
duced execution time (63.6 min versus 94.2 min) but also
helped to find more code coverage (13.2% versus 11.8%)
in the real-world software. Take an example of libtiff; the

function TIFFReadDirectoryFindFieldInfo() keeps in-
troducing new constraints because it contains a loop with
a symbolic branch. Basic block pruning made QSYM con-
cretely execute the function and focus on other interesting
code, whereas running without it made the emulation
stuck there for generating constraints.

The other design decisions, context-sensitivity and
grouping, are essential to increase code coverage. Fig-
ure 13 also shows code coverage and time when we dis-
abled each grouping and context-sensitivity. If we disable
grouping and use the AFL’s algorithm as is, the pruning
is too fine-grained, so it harms code coverage. A similar
result was observed when we disabled context-sensitivity.
In this case, QSYM prunes basic blocks too aggressively,
prohibiting the generation of solvable constraints. Thus,
these two design decisions are necessary to minimize the
loss of code coverage.

6 Analysis of New Bugs Found

Out of 13 new bugs QSYM found, we took two interesting
cases from ffmpeg and file in which we can clearly convey
our idea. For each case, we attempt to answer how QSYM
was able to find them, which features of QSYM helped
find them, and most importantly, why OSS-Fuzz missed
them.

6.1 ffmpeg

Figure 14 shows the simplified code of the ffmpeg bug
that QSYM found, and the test case generated by QSYM to
trigger it. To trigger the bug, a test case should meet very
complicated constraints (Lines 3–10), which is nearly
impossible for fuzzing. In contrast, QSYM successfully
generated a new test case that can pass the complicated
branch by modifying the seven bytes of a given input.
AFL was able to pass the branch with the new test case
and eventually reached the bug.

6.2 file

Figure 15 shows the simplified code of the file bug that
QSYM found. The bug is that the check of descsz be-
comes a tautology because of the incorrect use of the
logical OR operator while parsing the ELF’s note section.
Interestingly, even though the bug is triggered when pars-
ing an ELF file, initial seed files that we extracted from
the tests directory in the file project do not contain any
ELF files. In other words, QSYM successfully crafted a
valid ELF file with a note section and triggered the vul-
nerability. This bug is difficult to be detected by a fuzzer
because randomly crafting a valid ELF file with a note
section starting with “GNU” is almost infeasible. Note

1 // @libavcodec/x86/mpegvideodsp.c:58 (ffmpeg 3.4)
2 if (((ox ^ (ox + dxw))
3 | (ox ^ (ox + dxh))
4 | (ox ^ (ox + dxw + dxh))
5 | (oy ^ (oy + dyw))
6 | (oy ^ (oy + dyh))
7 | (oy ^ (oy + dyw + dyh))) >> (16 + shift)
8 || (dxx | dxy | dyx | dyy) & 15
9 || (need_emu && (h > MAX_H || stride > MAX_STRIDE)))

10 { ... return; }
11 // the bug is here

// input
< 00000010: 0120 0040 7800 000e 0001 0000 0820 8403
< 00000020: 0747 013f 303f 3f3f 7f7f 7fff 0080 8080

// output
> 00000010: 0120 0040 7800 000e 0008 0020 0020 47c3
> 00000020: 4040 013f 303f 3f3f 7f7f 7fff 0080 8080

Figure 14: The ffmpeg code about the bug found by QSYM

and the test case generated by QSYM to reach it. AFL alone
was unable to reach the bug because it is almost infeasible to
randomly generate input to pass the complicated condition in
Lines 3–10.

1 // @src/readelf.c:513 (file 5.31)
2 if (namesz == 4
3 && strcmp((char *)&nbuf[noff], "GNU") == 0
4 && type == NT_GNU_BUILD_ID
5 && (descsz >= 4 || descsz <= 20)) {...}

Figure 15: The file bug that QSYM found. The check for descsz
is always true due to the incorrect use of logical OR operator.

that a concurrent bug report [27] detected this bug using
a static analysis tool cppcheck [32].

7 Discussion

We discuss the potentials of QSYM’s technique beyond
hybrid fuzzing, using QSYM with other fuzzers, and the
limitations of QSYM.
Adoption beyond fuzzing. Basic block pruning (§3.3)
can directly be applied to the other concolic executors as
a heuristic path exploration strategy. Take an example of
testing file parsers; this technique allows QSYM to focus
on control data (i.e., headers), which leads to new code
coverage [33], rather than payloads, which will consume
a lot more time to analyze but do not discover any new
code coverage. We envision that the same strategy may
help other concolic executors on testing programs with
complex data processing logic such as data compression,
Fourier transform, and cryptographic logic. By adopting
this, concolic executors can automatically truncate such
complex yet irrelevant logic and stay focused on the input
fields that determine a program’s control flow.

Optimistic solving (in §3.2) could also be applied to
other domains to speed up symbolic execution, with a
condition if the domain runs an efficient validator like a
fuzzer. This cannot be directly applied to general concolic
executors because optimistic solving relaxes an overly-

constrained path to generate some potentially correct in-
puts. It will generate a haystack of false positives that
deviate the program state from the expected state. How-
ever, in hybrid fuzzing like QSYM, because the fuzzer can
efficiently validate whether the input drives the program
to an expected state (i.e., finding a new code coverage)
or not, we can quickly extract some useful results from
the haystack. Likewise, other domains, for instance, au-
tomatic exploit generation, can adapt this technique to
speed up for quickly reaching to the vulnerable state and
crafting an exploit. After that, it could also efficiently
validate a crafted exploit by just executing it and observe
the core dump to check if it is a false positive.
Complementing each other with other fuzzers. Hy-
briding QSYM with other fuzzers better than AFL will
show better results. While other fuzzers exist that en-
hance AFL, such as VUzzer [9] and AFLFast [34], in
this paper, we applied QSYM to AFL in order to fairly
present the enhancement only by the concolic execution.
QSYM can complement the others by quickly reaching
the branch with narrow-ranged, complex constraints and
solving them to generate test cases for that point. More-
over, QSYM can also be complemented by other fuzzers.
Frequency-based analysis step and Markov chain mod-
eling in AFLFast, as well as error-handler detection in
VUzzer, could generate more meaningful input, which
would result in using QSYM’s concolic executor more
efficiently.
Limitations. Although fast, QSYM is a concolic ex-
ecutor, so its performance is still bound to theoretical
limits like constraint solving. Currently, QSYM is special-
ized to test programs that run on the x86_64 architecture.
Unlike other executors that adopted IR, QSYM cannot
test programs that run on other architectures. We plan
to overcome this limitation by improving QSYM to work
with architecture specifications [13, 35] rather than a spe-
cific architecture implementation. Additionally, QSYM
currently supports only memory, arithmetic, bitwise, and
vector instructions, all of which are essential for vulner-
ability discovery. We plan to support other instructions
including floating-point operations to extend QSYM’s test-
ing capability.

8 Related Work

8.1 Coverage-Guided Fuzzing
Coverage-guided fuzzing becomes popular especially
since AFL [1] has shown its effectiveness. AFL prior-
itizes inputs that likely reveal new paths by collecting
coverage information during program execution to as-
sess generated inputs, enabling quick coverage expansion.
Also, AFLFast [34] uses a Markov chain model to pri-
oritize paths with low reachability, and CollAFL [36]

provides accurate coverage information to mitigate path
collisions.

However, fuzzing has a fundamental limitation: it can-
not traverse paths beyond narrow-ranged input constraints
(e.g., a magic value). To overcome such a limitation,
VUzzer [9] develops application-aware mutation tech-
niques by performing static and dynamic program anal-
ysis. Steelix [37] recovers correct magic values by col-
lecting comparison progress information during program
execution. FairFuzz [38] discovers magic values and pre-
vents their mutations with program analysis and heuris-
tics. Angora [39] adopts taint tracking, shape and type
inference, and a gradient-descent-based search strategy
to solve path constraints efficiently. These approaches,
however, can only handle certain types of constraints. In
contrast, QSYM relies on symbolic execution such that it
has a chance to satisfy any kinds of constraints. In addi-
tion, a recent study, T-Fuzz [40], transforms a program
itself to cover more interesting code paths, which could be
combined with QSYM to remove unsolvable constraints
from the program.

8.2 Concolic Execution
Concolic execution is a path-exploring technique that
performs symbolic execution along a concrete execution
path to direct the program to new execution paths. Con-
colic execution has been largely adopted for automatic
vulnerability finding from source code [19, 41, 42] to
binary [4, 5, 20, 21, 43].

However, concolic execution suffers from the path ex-
plosion problem in which the number of paths to explore
grows exponentially with a program size. To mitigate this
problem, SAGE [4, 44] proposes generational search to
maximize the number of test cases in one execution and
applies unrelated constraint solving [45]. Dowser [46]
uses static analysis and taint analysis to guide concolic
execution and minimizes the number of symbolic ex-
pressions to find buffer overflow vulnerabilities. May-
hem [21] combines forking-based symbolic execution
and re-execution-based symbolic execution to balance
performance and memory usage. In contrast, QSYM uses
(1) fuzzing to explore most paths to avoid the path ex-
plosion problem, (2) generic heuristics (e.g., basic block
pruning) without assuming any specific bug type, and (3)
instruction-level re-execution-based symbolic execution
for better performance.

8.3 Hybrid Fuzzing
The concept of hybrid fuzzing is first proposed by Ma-
jumdar and Sen [6]. Later, Driller [8] demonstrated its
effectiveness in DARPA CGC with a refined implemen-
tation. In both studies, the majority of path exploration

is offloaded to the fuzzer, while concolic execution is
selectively used to drive execution across the paths that
are guarded by narrow-ranged constraints. Pak [7] also
proposes a similar idea, but it is limited to the frontier
nodes that are mainly magic value checks at early execu-
tion stages. However, these hybrid fuzzers use general
concolic executors that are not only slow but also incom-
patible with hybrid fuzzing. On the contrary, QSYM is
tailored for hybrid fuzzing, so that it can scale to detect
bugs from real-world software.

9 Conclusion

This paper presented QSYM, a fast concolic execution en-
gine tailored to support hybrid fuzzers. QSYM makes hy-
brid fuzzing scalable enough to test complex, real-world
applications. Our evaluation results showed that QSYM
outperformed Driller in the DARPA CGC binaries and
VUzzer in the LAVA-M test set. More importantly, QSYM
found 13 previously unknown bugs in the eight non-trivial
programs, such as ffmpeg and OpenJPEG, which have
heavily been tested by the state-of-the-art fuzzer, OSS-
Fuzz, on Google’s distributed fuzzing infrastructure.

10 Acknowledgments

We thank the anonymous reviewers, and our shep-
herd, Mathias Payer, for their helpful feedback.
This research was supported in part by NSF, under
awards CNS-1563848, CRI-1629851, CNS-1704701,
and CNS-1749711, ONR under grants N000141512162
and N000141712895, DARPA TC (No. DARPA
FA8650-15-C-7556), NRF-2017R1A6A3A03002506,
ETRI IITP/KEIT [2014-0-00035], and gifts from Face-
book, Mozilla, and Intel.

References

[1] M. Zalewski, “american fuzzy lop,” http://lcamtuf.
coredump.cx/afl/, 2015.

[2] Google, “honggfuzz,” https://github.com/google/
honggfuzz, 2010.

[3] ——, “OSS-Fuzz - continuous fuzzing of open
source software,” https://github.com/google/oss-
fuzz, 2016.

[4] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Au-
tomated whitebox fuzz testing,” in Proceedings of
the 15th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb.
2008.

[5] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E:
A platform for in-vivo multi-path analysis of soft-

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

ware systems,” in Proceedings of the 16th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Newport Beach, CA, Mar. 2011.

[6] R. Majumdar and K. Sen, “Hybrid Concolic Testing,”
in Proceedings of the 29th International Conference
on Software Engineering (ICSE), Minneapolis, MN,
May 2007.

[7] B. S. Pak, “Hybrid fuzz testing: Discovering soft-
ware bugs via fuzzing and symbolic execution,” Mas-
ter’s thesis, Carnegie Mellon University Pittsburgh,
PA, 2012.

[8] N. Stephens, J. Grosen, C. Salls, A. Dutcher,
R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel,
and G. Vigna, “Driller: Augmenting fuzzing through
selective symbolic execution,” in Proceedings of the
2016 Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, CA, Feb. 2016.

[9] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuf-
frida, and H. Bos, “VUzzer: Application-aware evo-
lutionary fuzzing,” in Proceedings of the 2017 An-
nual Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA, Feb.–Mar. 2017.

[10] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek,
A. Mambretti, W. Robertson, F. Ulrich, and R. Whe-
lan, “LAVA: Large-scale automated vulnerability
addition,” in Proceedings of the 37th IEEE Sympo-
sium on Security and Privacy (Oakland), San Jose,
CA, May 2016.

[11] Google, “Fuzzing for Security,” https://blog.
chromium.org/2012/04/fuzzing-for-security.html,
2012.

[12] X. Leroy and D. Doligez, “mosml/md5sum.c at mas-
ter,” https://github.com/kfl/mosml/blob/master/src/
runtime/md5sum.c, 2014.

[13] S. Heule, E. Schkufza, R. Sharma, and A. Aiken,
“Stratified synthesis: automatically learning the x86-
64 instruction set,” in Proceedings of the 2016 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Santa Barbara,
CA, Jun. 2016.

[14] Intel, “Intel R⃝ 64 and ia-32 architectures software
developer’s manual,” Volume 2: Instruction Set Ref-
erence, A–Z, 2016.

[15] L. Project, “LLVM language reference man-
ual,” https://llvm.org/docs/LangRef.html#llvm-
language-reference-manual, 2003.

[16] N. Nethercote and J. Seward, “Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumen-
tation,” in Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and

Implementation (PLDI), San Diego, CA, Jun. 2007.
[17] R. David, S. Bardin, J. Feist, L. Mounier, M.-L.

Potet, T. D. Ta, and J.-Y. Marion, “Specification of
concretization and symbolization policies in sym-
bolic execution.” in Proceedings of the International
Symposium on Software Testing and Analysis (IS-
STA), Saarbrücken, Germany, Jul. 2016.

[18] T. Liu, M. Araújo, M. d’Amorim, and M. Taghdiri,
“A comparative study of incremental constraint solv-
ing approaches in symbolic execution,” in Proceed-
ings of the Haifa Verification Conference(HVC’14),
Haifa, Israel, Nov. 2014.

[19] P. Godefroid, N. Klarlund, and K. Sen, “DART: Di-
rected Automated Random Testing,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
Chicago, IL, Jun. 2005.

[20] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng,
C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State
of) The Art of War: Offensive Techniques in Binary
Analysis,” in Proceedings of the 37th IEEE Sympo-
sium on Security and Privacy (Oakland), San Jose,
CA, May 2016.

[21] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing mayhem on binary code,” in Proceed-
ings of the 33rd IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2012.

[22] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brum-
ley, “Your exploit is mine: Automatic shellcode
transplant for remote exploits,” in Proceedings of
the 38th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2017.

[23] J. Hendrix and B. F. Jones, “Bounded integer linear
constraint solving via lattice search,” in Proceed-
ings of the International Workshop on Satisfiability
Modulo Theories, 2015.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood, “Pin: building customized program analysis
tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
Chicago, IL, Jun. 2005.

[25] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh,
D. I. August, and A. D. Keromytis, “A general ap-
proach for efficiently accelerating software-based
dynamic data flow tracking on commodity hard-
ware.” in Proceedings of the 19th Annual Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2012.

[26] “CVE-2017-11543,” https://cve.mitre.org/cgi-bin/

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://github.com/kfl/mosml/blob/master/src/runtime/md5sum.c
https://github.com/kfl/mosml/blob/master/src/runtime/md5sum.c
https://llvm.org/docs/LangRef.html#llvm-language-reference-manual
https://llvm.org/docs/LangRef.html#llvm-language-reference-manual
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11543

cvename.cgi?name=CVE-2017-11543.
[27] “CVE-2017-1000249,” https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-1000249.
[28] O. Chang, A. Arya, K. Serebryany, and J. Ar-

mour, “OSS-Fuzz: Five months later, and rewarding
projects,” https://opensource.googleblog.com/2017/
05/oss-fuzz-five-months-later-and.html, 2017.

[29] “PNG specification: Chunk specifications,” https:
//www.w3.org/TR/PNG-Chunks.html, 1996.

[30] DARPA, “Cyber Grand Challenge,”
https://www.cybergrandchallenge.com/, 2016.

[31] Shellphish, “Shellphish AFL package,”
https://github.com/shellphish/shellphish-afl,
2016.

[32] “Cppcheck: A tool for static C/C++ code analysis,”
http://cppcheck.sourceforge.net/.

[33] M. Rajpal, W. Blum, and R. Singh, “Not all bytes are
equal: Neural byte sieve for fuzzing,” arXiv preprint
arXiv:1711.04596, 2017.

[34] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based Greybox Fuzzing as Markov
Chain,” in Proceedings of the 23rd ACM Confer-
ence on Computer and Communications Security
(CCS), Vienna, Austria, Oct. 2016.

[35] A. Reid, R. Chen, A. Deligiannis, D. Gilday,
D. Hoyes, W. Keen, A. Pathirane, O. Shepherd,
P. Vrabel, and A. Zaidi, “End-to-end verification of
processors with isa-formal,” in Proceedings of the
28th International Conference on Computer Aided
Verification (CAV), Toronto, Canada, Jul. 2016.

[36] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and
Z. Chen, “CollAFL: Path sensitive fuzzing,” in Pro-
ceedings of the 39th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May
2018.

[37] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu,
and A. Tiu, “Steelix: Program-State Based Binary
Fuzzing,” in Proceedings of the 11th ACM SIGSOFT
Symposium on the Foundations of Software Engi-
neering (FSE), Paderborn, Germany, Sep. 2017.

[38] C. Lemieux and K. Sen, “FairFuzz: Targeting Rare
Branches to Rapidly Increase Greybox Fuzz Testing

Coverage,” ArXiv e-prints, Sep. 2017.
[39] P. Chen and H. Chen, “Angora: Efficient fuzzing by

principled search,” in Proceedings of the 39th IEEE
Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2018.

[40] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz:
fuzzing by program transformation,” in Proceedings
of the 39th IEEE Symposium on Security and Pri-
vacy (Oakland), San Francisco, CA, May 2018.

[41] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler, “EXE: Automatically Generating
Inputs of Death,” in Proceedings of the 13th ACM
Conference on Computer and Communications Se-
curity (CCS), Alexandria, VA, Oct.–Nov. 2006.

[42] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unas-
sisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs,” in Proceed-
ings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), San
Diego, CA, Dec. 2008.

[43] L. Martignoni, S. McCamant, P. Poosankam,
D. Song, and P. Maniatis, “Path-exploration lifting:
Hi-fi tests for lo-fi emulators,” in Proceedings of
the 18th ACM International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS), Houston, TX, Mar.
2013.

[44] E. Bounimova, P. Godefroid, and D. Molnar, “Bil-
lions and billions of constraints: Whitebox fuzz
testing in production,” in Proceedings of the 35th
International Conference on Software Engineering
(ICSE), San Francisco, CA, May 2013.

[45] K. Sen, D. Marinov, and G. Agha, “CUTE: a con-
colic unit testing engine for C,” in Proceedings of
the 10th European Software Engineering Confer-
ence (ESEC) / 13th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), Lis-
bon, Portugal, Sep. 2005.

[46] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos, “Dowsing for Overflows: A Guided Fuzzer
to Find Buffer Boundary Violations,” in Proceedings
of the 22th USENIX Security Symposium (Security),
Washington, DC, Aug. 2013.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000249
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000249
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://www.w3.org/TR/PNG-Chunks.html
https://www.w3.org/TR/PNG-Chunks.html
http://cppcheck.sourceforge.net/

	Introduction
	Motivation: Performance Bottlenecks
	P1. Slow Symbolic Emulation
	P2. Ineffective Snapshot
	P3. Slow and Inflexible Sound Analysis

	Design
	Taming Concolic Executor
	Optimistic Solving
	Basic Block Pruning

	Implementation
	Evaluation
	Scaling to Real-world Software
	Code Coverage Effectiveness
	Fast Symbolic Emulation
	Optimistic Solving
	Pruning Basic Blocks

	Analysis of New Bugs Found
	ffmpeg
	file

	Discussion
	Related Work
	Coverage-Guided Fuzzing
	Concolic Execution
	Hybrid Fuzzing

	Conclusion
	Acknowledgments

