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Two popular ways to find security bugs: 
Fuzzing & Concolic execution

Fuzzing Symbolic Execution
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Fuzzing and Concolic execution have their 
own pros and cons
• Fuzzing
• Good: Finding general inputs
• Bad: Finding specific inputs

• Concolic execution
• Good: Finding specific inputs
• Bad: State explosion
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Hybrid fuzzing can address their problems

• Use both techniques: Fuzzing + Concolic execution

• Find specific inputs: Using concolic execution
• Limit state explosion: Only fork at branches that are hard to fuzzing 
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Hybrid fuzzing has achieved great success in small-
scale study
• e.g.) Driller: a state-of-the-art hybrid fuzzer
• Won 3rd place in CGC competition
• Found 6 new crashes: cannot be found by fuzzing nor concolic execution
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However, current hybrid fuzzing suffers from 
problems to scale to real-world applications
• Very slow to generate constraint

• Cannot support complete system calls

• Not effective in generating test cases
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Our system, QSYM, addresses these issues by 
introducing several key ideas
• Discard intermediate layer for performance

• Use concrete environment to support system calls

• Introduce heuristics to effectively generate test cases

7



QSYM is scalable to real-world software

• 13 previously unknown bugs in open-source software

• All applications are already fuzzed (OSS-Fuzz, AFL, …)
• Including ffmpeg that is fuzzed by OSS-Fuzz for 2 years

• Bugs are hard to pure fuzzing – require complex constraints
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Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases
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Environment modeling
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Ineffective test case generation 
due to unsatisfiable paths
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Blocked
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Refer our paper
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Intermediate representations (IR) are good to 
make implementations easier
• Provide architecture-independent interpretations

• Can re-use code for all architectures

• e.g. angr works on many architectures: x86, arm, and mips
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Problem1: IR incurs significant performance 
overhead
• Increase the number of instructions
• 4.7 times in VEX (IR used by angr)

• Need to execute a whole basic block symbolically
• Due to caching and optimization
• Only 30% of instructions need to be symbolically executed
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Solution1: Execute instructions directly 
without using intermediate layer
• Remove the IR translation layer
• Pay for the implementation complexity
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QSYM reduces the number of instructions to 
execute symbolically
• 126 CGC binaries
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4x less



Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

23

Incomplete 
Environment modeling



State forking can reduce re-execution 
overhead for constraint generation
• No need to re-execute to reach the state
• Recover from the snapshot
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State forking  for kernel is non-trivial

• State in concolic execution = Program state + Kernel state

• Forking program state is trivial
• Save application memory + register
• Save constraints

• Forking kernel state is non-trivial
• Need to maintain all kernel data structures
• e.g., file system, network state, memory system …
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Problem2: State forking introduces problems in either 
completeness or performance

• Kernel modeling
• e.g.) angr
• Pros: Small performance overhead 
• Cons: Incompleteness – angr supports only 22 system calls in Linux

• Full kernel emulation
• e.g.) S2E
• Pros: Completeness
• Cons: Large performance overhead
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Solution2:  Re-execute to use concrete 
environment instead of kernel state forking
• Instead of state forking, re-execute from start

• High re-execution overhead
• Instruction-level execution
• Basic block pruning

• Limit constraint solving: Based on coverage from fuzzing
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Models minimal system calls and uses 
concrete values
• Only model system calls that are relevant to user interactions
• e.g.) standard input, file read, …

• Other system calls: Call system call using concrete values
• e.g.) mprotect(addr, sym_size, PROT_R) 

à mprotect(addr, conc_size, PROT_R)
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Problem: Concrete environment results in 
incomplete constraints 
• Add implicit constraints
• e.g.) mprotect(addr, sym_size, PROT_R) 

à mprotect(addr, conc_size, PROT_R)

• Without knowing semantics of system calls
• Concretize: Over-constrained
• Ignore: Under-constrained
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Unrelated constraint elimination can tolerate 
incomplete constraints

x = int(input())
y = int(input())

# Incomplete constraints
mprotect(addr, x, PROT_R)

if y * y == 1337 * 1337:
bug()

Constraints for x (Incomplete)
&& y * y == 1337 * 1337

Path constraints

y * y == 1337 * 1337
Branch dependent constraints

x = Use concrete value
y = 1337
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Ineffective test case generation 
due to unsatisfiable paths



Problem3: Over-constrained paths results in 
no test cases

type = int(input())

if type == TYPE1:
parse_TYPE1()

…

if type == TYPE2:
parse_TYPE2()

type = int(input())

type == TYPE1

….

type == TYPE2

Unsatisfiable: No test case

+ long time
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type != TYPE1
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If these branches are independent



Solution3: Solve constraints optimistically

type = int(input())

if type == TYPE1:
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…
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….
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Our decision: Solve only the last constraint in 
the path 

type = int(input())

if type == TYPE1:
parse_TYPE1()

…

if type == TYPE2:
parse_TYPE2()
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• Simple: Only one constraint
• High chance to pass the branch

• Only waste a small solving time



In hybrid fuzzing, generating incorrect inputs 
are fine due to fuzzing

Program

push ebp
mov ebp, esp
…

Basic block

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints

Fuzzing

Coverage

Test cases
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Fuzzing will filter out 
incorrect inputs based on coverage



Optimistic solving helps to find more bugs
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• LAVA-M dataset



Implementation

• 16K LoC of C++

• Intel Pin: emulation
• Z3: constraint solving

• Will be available at https://github.com/sslab-gatech/qsym
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Evaluation questions

• Scaling to real-world software?

• How good is QSYM compared to
• Driller (a state-of-the-art hybrid fuzzing)
• Vuzzer (a state-of-the-art fuzzing)
• Fuzzing and symbolic execution
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QSYM scales to real-world software

• 13 bugs in real-world software

40



QSYM can generate test cases that fuzzing is 
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if( ((ox^(ox+dxw)) 
| (ox^(ox+dxh)) 
| (ox^(ox+dxw+ dxh)) 
| (oy^(oy+dyw)) 
| (oy^(oy+dyh)) 
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
|| (dxx | dxy | dyx | dyy) & 15 
|| (need_emu && (h > MAX_H || stride > MAX_STRIDE))) 

{ ... return; } 
// the bug is here 
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Compare QSYM with Driller, a state-of-the-art 
hybrid fuzzing
• Dataset: 126 binaries from CGC

• Run only one instance of concolic execution for 5 min
• i.e., remove fuzzing

• Compare code coverage
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QSYM achieved more code coverage than 
Driller in most cases of CGC
• Among 126 challenges
• QSYM achieved more: 104 challenges
• Driller achieved more: 18 challenges
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QSYM achieved more code coverage due to 
its better performance
• e.g., CROMU_00001

• To achieve new code coverage, seven stages are required
• Add one user à Add another user à login à send to message à …

• QSYM can reach the stage, but Driller cannot in time
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Driller achieved more code coverage if nested 
branches exist
• Driller can find inputs for nested branches by a single execution due 

to forking

• QSYM requires re-execution
• NOTE: Our experiment allows only one instance of concolic execution
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QSYM outperforms other techniques in LAVA-M 
dataset

• LAVA-M dataset: inject hard-to-find bugs in real-world software
• 5 hour run
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Discussions & Limitation

• Use of less accurate test cases
• Requires efficient validators
• e.g., exploit generation

• Implementation status
• Only support x86, x86_64
• No floating point support
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Conclusion

• Hybrid fuzzing scalable to real-world software
• 13 bugs in real-world software

• Outperform a state-of-the-art hybrid fuzzing and other bug finding

• https://github.com/sslab-gatech/qsym
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Thank you
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Using only the last constraint is good for time 
and bug finding
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Number of instructions that are not emulated 
by QSYM due to its limitation

• 13 / 126 challenges: At least one
• 3 / 126 challenges: More than 1% of total instructions
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