
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Practical Privacy-Preserving Authentication for SSH
Lawrence Roy, Stanislav Lyakhov, Yeongjin Jang,

and Mike Rosulek, Oregon State University
https://www.usenix.org/conference/usenixsecurity22/presentation/roy

Practical Privacy-Preserving Authentication for SSH

Lawrence Roy∗

Oregon State University
Stanislav Lyakhov

Oregon State University
Yeongjin Jang

Oregon State University

Mike Rosulek
Oregon State University

Abstract
Public-key authentication in SSH reveals more information
about the participants’ keys than is necessary. (1) The server
can learn a client’s entire set of public keys, even keys gen-
erated for other servers. (2) The server learns exactly which
key the client uses to authenticate, and can further prove this
fact to a third party. (3) A client can learn whether the server
recognizes public keys belonging to other users. Each of these
problems lead to tangible privacy violations for SSH users.

In this work we introduce a new public-key authentica-
tion method for SSH that reveals essentially the minimum
possible amount of information. With our new method, the
server learns only whether the client knows the private key
for some authorized public key. If multiple keys are autho-
rized, the server does not learn which one the client used.
The client cannot learn whether the server recognizes public
keys belonging to other users. Unlike traditional SSH authen-
tication, our method is fully deniable. Our new method also
makes it harder for a malicious server to intercept first-use
SSH connections on a large scale.

Our method supports existing SSH keypairs of all standard
flavors — RSA, ECDSA, EdDSA. It does not require users
to generate new key material. As in traditional SSH authenti-
cation, clients and servers can use a mixture of different key
flavors in a single authentication session.

We integrated our new authentication method into
OpenSSH, and found it to be practical and scalable. For a
typical client and server with at most 10 ECDSA/EdDSA
keys each, our protocol requires 9 kB of communication and
12.4 ms of latency. Even for a client with 20 keys and server
with 100 keys, our protocol requires only 12 kB of communi-
cation and 26.7 ms of latency.

1 Introduction
The Secure Shell (SSH) protocol is used by developers for
interacting with remote servers, transmitting files, opening se-
cure tunnels, and updating git repositories. The recommended

∗Supported by a DoE CSGF Fellowship.

method for authentication in SSH is public-key authentica-
tion [45]. This authentication method requires a client to
generate keypairs and register the public keys with the server.
The server stores, for each user, a list of authorized keys (e.g.,
~/.ssh/authorized_keys).

Figure 1a illustrates how public-key authentication works
in SSH. The client may have public keys for many servers, so
the client advertises its public keys, one at a time. These key
advertisements continue until the server recognizes a public
key contained in the user’s authorized key list. Finally, the
client signs a nonce to prove the ownership of the matching
private key, and the authentication is successful if the server
can verify the signature.

1.1 Privacy Attacks Against SSH Authentication
Unfortunately, SSH’s authentication protocol leaks more in-
formation than required for authentication. First, a server can
learn all of the client’s public keys — even its keys for an-
other server [44, 46, 47] — allowing the server to fingerprint
clients based on their public keys. Second, a client can check
if a (username,public_key) pair is valid for authentication,
even without knowing the corresponding secret key, allowing
the client to probe the server for authorized users. This be-
havior of SSH was known to the developer in 2002, has been
reported in CVE-2016-20012, but not fixed as of May 2022,
for 20 years [35].

Third, a server knows which key has been used in authen-
ticating the current session, allowing the server to track a
specific user’s usage based on their keys, and also prove to
third parties that the user authenticated. Fourth, a malicious
server can intercept a client’s connection, fooling any user
who does not carefully check the server’s public key finger-
print upon first use. In the following, we give more detail on
each of these attacks
Preliminary: building a key-to-id database. It is possi-
ble to build a database that partially maps SSH public keys
to pseudonyms (i.e., usernames on online services). This is
because public services such as Github and Gitlab make all
users’ SSH public keys available to the general public. For ex-

USENIX Association 31st USENIX Security Symposium 3345

(a) Normal Authentication. Client advertises its public keys one by one.
When the server recognizes an authorized key, it requests a signature. Au-
thentication succeeds if the signature can be verified.

(b) Attack 1: Client De-anonymization. A malicious server rejects all of the
client’s public-key advertisement. This causes the client to advertise all of
its public keys, under the default client behavior. The server can then use a
key-to-id database to identify pseudonyms of the client, e.g., their Github
username.

(c) Attack 2: User Probing by Client, CVE-2016-20012. A malicious client
obtains a victim’s username and public-key pair from its key-to-id database.
The client guesses or searches for a likely username, then attempts to au-
thenticate to the server by advertising this public-key. The server’s response
reveals whether that public key is authorized for that username.

Figure 1: Illustration of SSH public-key authentication and attacks.
We have not drawn protocol-message arrows for server’s rejections
of public-key advertisements. Client holds multiple private keys, and
the server holds a list of authorized public keys.

ample, the SSH keys used by a Github user torvalds can be
publicly accessed via https://github.com/torvalds.keys.
This feature is available for the user’s convenience, e.g., any-
one can easily authorize a user to their SSH server simply by
knowing their Github username. Consequently, it is possible
to build a database mapping public keys to pseudonyms by
enumerating all usernames on the service [10, 36].

Attack 1: Client De-anonymization. A malicious server
may obtain a list of all available public keys of the client, then
use this list to reveal the client’s identity (pseudonyms on
public services). Figure 1b illustrates how this attack works.
Specifically, the server simply declines all public keys ad-
vertised by the client, so that the client eventually offers all
of its public keys.1 This is because the default behavior of

1The default behavior of an OpenSSH server considers a rejected public-
key advertisement as an authentication failure, and limits the number of such
failures to 6 per connection. However, the server can be configured with
DEFAULT_AUTH_FAIL_MAX=1000 to ensure that the client can advertise all of
its public keys.

the SSH client [39] is to continue advertising all keys until
authentication succeeds.

Colluding servers can identify common users, and any
server can discover the client’s public pseudonyms by con-
sulting a key-to-pseudonym database built from a corpus of
publicly available keys [44, 46, 47].

In particular, Cox [10] built a database containing the public
keys of all Github users, using the Github website function-
ality described above. Later, Valsorda [46] built and publicly
deployed a proof-of-concept de-anonymizing SSH server [47],
driven from this database. The server would decline every
public key offered by the client, until the client exhausted
its set of public keys. The server would check the client’s
keys against the Github key database and print a message
containing the client’s Github username.
Attack 2: User Probing by the Client. A malicious client
can check if a public key is authorized for a username on
the server. Such information, in combination with the key-
to-pseudonym database, can be used by the client to probe
whether a specific user exists on the server. The vulnerability
has been acknowledged by comments in the OpenSSH source
code [40] since May of 2002, and assigned CVE-2016-20012,
but has not been fixed.

Figure 1c illustrates the attack. In particular, a client may
advertise a public key for which it does not know the secret
key. The server gives a different response based on whether
that key is authorized for the give username.

Using this basic attack as a primitive, an attacker can reveal
the identity of a known username on the server by trying
public keys from a database. This attack is especially effective
against users who re-use usernames across different services.
Additionally, an attacker can often obtain the list of users if
the attacker itself has access to the server. In such a case, the
attacker may reveal the Github usernames of all accounts on
the server.
Attack 3: Tracking and Implicating Users via Key-Usage
Patterns. The server knows exactly which public key is used
in each successful authentication. A malicious server can
use this information to track the usage of individual users
or devices based on their keys. As an example, a user may
have multiple keys registered for the server under a single
username, where each key is associated with a different device
(e.g., laptop, desktop, work computer). Then a server can track
the usage patterns for specific devices.

Another example is an SSH account shared among an
anonymous group. Suppose one would like to build an anony-
mous group of open source developers that uses git via SSH
as their source code repository. Anonymity is not possible in
this scenario, since the SSH server learns exactly which key
was used for each commit.

Clients authenticate by signing some data under their pri-
vate key. Signatures are non-repudiable meaning that a sig-
nature is proof that a specific user endorsed a message. The
signature produced in an SSH authentication is thus proof,

3346 31st USENIX Security Symposium USENIX Association

https://github.com/torvalds.keys

verifiable by anyone, that a particular user connected to a
server. I.e., a client cannot plausibly deny that it connected to
the server. In other online infrastructure (encrypted messag-
ing, email), deniability is understood as a desirable feature,
and therefore it is natural to ask whether deniabiilty can be
extended to SSH authentication.

Attack 4: Intercepting Connections on First Use. This
final attack is an attack on security, not on privacy. Instead of
declining every public key offered by the client (as in Attack
1), a malicious server can accept every key. If an attacker
redirects a client’s SSH traffic to such a server, the client will
wrongly believe that he/she has connected to a different, de-
sired server. Of course, SSH clients verify the server’s public
key in order to prevent such an attack. However, a user who
follows a trust on first use (TOFU) principle may not care-
fully check the server’s public key fingerprint upon the first
connection. This leaves the first connection vulnerable to this
kind of attack.

1.2 Problem Statement and Goal

The unifying problem in the first three attacks is that a server
or a client may obtain more information than is needed for
authentication, such as unrelated public keys held by the client,
the validity of a username-public-key pair on the server, or
the identity of the key (with corresponding proof) used in a
successful authentication.

The SSH community and developers are aware of these
problems [40, 44, 46, 47]. These problems remain because
blocking these information leaks requires either maintaining
site-specific configuration (in the case of Attacks 1 & 2), or
fundamentally changing the protocol (Attacks 3 & 4); see
§1.3.

Since SSH has become an important part of the Internet
infrastructure, it is worth revisiting whether its privacy issues
can be completely eliminated. There have been significant ad-
vances in cryptographic protocols (specifically, protocols for
private set intersection) since SSH was designed. Authentica-
tion approaches based on advanced cryptographic techniques
— which may have previously seemed far-fetched and pro-
hibitively expensive — may now be truly practical.

What would be the appropriate way to reimagine SSH
authentication to resolve these privacy problems? A server
should grant access to a client iff the client holds a secret
key corresponding to one of the public keys that the server
considers authorized. If the authentication mechanism reveals
more information about the participants’ keys than the answer
to this question, there is a potential for violating users’ privacy.

Our work is motivated by the question:

Is it possible for public-key authentication in SSH to
reveal only the bare minimum information?

Our goal is to design an authentication protocol satisfying
the following requirements:

Security. The protocol should not reveal information beyond
what is strictly required for an authentication decision. With-
out extra information, three of the aforementioned privacy
attacks cannot be carried out. Of course, both clients and
servers can learn extra information about each other through
other parts of an SSH interaction (e.g., IP address, software
version, etc). However, we believe there is no reason for the
public-key authentication mechanism itself to contribute to
privacy violations in SSH, enabling aforementioned attacks.
Drop-In Replacement. Some of the attacks that we consider
are inherent to the SSH authentication protocol, and can only
be fixed by introducing a new authentication protocol. Given
this fact, our goal is to mimize the required changes to existing
deployments and user experience. Specifically:

1. The protocol should authenticate clients with respect to
their existing SSH keys — i.e., server/client should not
need to change keys or generate new key material to
use the new protocol. Client and server can negotiate
whether to use the new or old authentication method.

2. Current SSH authentication works seamlessly even when
clients and servers hold keys of many different flavors
(e.g., RSA, (EC)DSA, EdDSA). The new authentication
protocol should also enjoy this property.

3. Clients should be able to benefit from the new protocol
without needing to establish and maintain site-specific
configuration.

1.3 Existing Mitigations and Their Limitations
We have introduced 4 motivating attacks on SSH authentica-
tion. There are several existing techniques to mitigate some
of these attacks, which we briefly discuss below. Some of
the attacks can be fully mitigated, but only at the cost of
site-specific configuration — whereas our proposed protocol
addresses all of the privacy problems simultaneously, and
“out of the box.” Other attacks are more fundamental to the
existing SSH authentication protocol and cannot be mitigated
without changing the protocol.
Configuration-level fixes. Most SSH clients [31, 39, 41] al-
low users to configure which public keys are advertised to
specific sites; this can indeed mitigate Attack 1. This counter-
measure requires manual server-specific configuration to be in
place before a connection, while our proposed approach com-
pletely protects the client’s privacy off-the-shelf. Additionally,
OpenSSH server has a configurable limit on the number of
authentication trials, which is 6 by default (any key advertised
by the client counts as an authentication attempt, regardless
of whether the server accepts the advertisement). This config-
uration cannot nullify the attack because the setup is done at
the server side. In Attack 1, the malicious party is the server,
and can freely change their configuration to launch the attack.

Regarding Attack 2, the SSH protocol allows clients to
optionally and pre-emptively provide a signature alongside a
public key advertisement, rather than advertising a key and
proving identity at a later time. In principle, an SSH server

USENIX Association 31st USENIX Security Symposium 3347

could be modified to accept only these kinds of advertise-
ments, so that a client who doesn’t know the correct secret
key cannot learn whether the server recognizes that key. If
both clients and servers employed appropriate configurations
(clients advertising only the “correct” keys to a server and in-
cluding pre-emptive signatures; servers requiring pre-emptive
signatures), then Attacks 1 & 2 would be effectively mitigated.
To the best of our knowledge, no implementation of SSH pro-
vides such a configuration option to the server. In general,
pre-emptive signatures have been discouraged in SSH because
it requires computational effort (signing) for the client which
may be considered wasted when the key is not authorized
by the server. Many SSH design decisions were made when
RSA and (non-EC) DSA were the only available signature
schemes; both of these schemes have expensive signing algo-
rithms. Modern signature schemes based on elliptic curves
are several orders of magntidue faster.

We note that our proposed protocol also requires the client
to expend effort equivalent to signing under each of its keys.
In that sense, our approach would have similar computational
cost to the approach where clients & servers modify their con-
figurations as just described. The advantage of our approach
would not be in its computational cost, but in the fact that it
does not allow anything less than this guarantee of privacy,
while requiring no special site-specific configuration for the
client, and also addressing the other attacks we consider.

Apart from the impact on Attack 2, if a client provides pre-
emptive signatures, the server obtains non-repudiable proof
that a certain user—even a user of a different service, if the
client does not limit its public keys on a per-site basis—has
tried to connect. Our proposed approach improves privacy
while also providing deniability.

Regarding Attack 3, no amount of client/server configura-
tion can provide client anonymity or deniability (hiding from
the server which among the authorized keys was used) since
the protocol fundamentally lacks these properties.

As we previously mentioned, clients can prevent Attack
4 by carefully checking the server’s public key fingerprint
upon first use. Existing SSH authentication can provide no
fallback protection to a client who does not verify the server’s
identity in this way. Looking ahead, our proposed protocol
does not eliminate Attack 4, but makes it harder for the adver-
sarial server, even if the client does not verify the server’s key
fingerprint.

Joint key management. To counter Attack 3, a group of
clients can enjoy anonymity by simply sharing a single secret
key. However, this is not a viable approach when the autho-
rized users do not know each other’s identities. Revocation of
a user from the group is also cumbersome under this kind of
arrangement.

Prior work on anonymous authentication. Many crypto-
graphic primitives promise a combination of anonymity and
authentication. Most notably, ring signatures [42] and their in-

teractive counterpart deniable ring authentication [34] allow
a client to prove that it knows the secret key corresponding
to some public key in a given set of authorized keys, with-
out revealing which key it knows. However, these primitives
fundamentally require the client/prover to know the set of au-
thorized keys, making them a poor fit for SSH authentication.

Other related primitives like group signatures [8] and
anonymous ad-hoc authentication [16] similarly require the
client to know the set of authorized keys. Few methods for
“anonymous authentication” also hide the set of authorized
keys. One notable exception is a secret handshake proto-
col [2] (see also [24–26, 30]), which hides one party’s au-
thentication policy and hides how the other party satisfied the
policy. However, authentication policies for secret handshake
protocols are expressed in terms of credentials issued by a
known central authority — not in terms of user-generated
keypairs. Furthermore, these protocols all require specialized
key material, not simple pre-existing SSH keys. The same
limitations are both true of authentication approaches based
on attribute-based cryptography [23, 29].

1.4 Our Contributions
Our main result is a practical privacy-preserving public-key
authentication method for SSH, with the following features:
Minimum information. Our method leaks almost the bare
minimum information necessary for authentication. Both par-
ties learn whether the client holds a secret key that corre-
sponds to a public key that the server considers authorized. In
addition:

1. The server learns how many keypairs the client has (but
not their flavors; e.g., RSA, ECDSA, etc.).

2. The client learns how many public keys of each flavor
are authorized (and even less information than this for
some flavors).

3. The client learns which of its valid keypairs are autho-
rized by the server. I.e., the only way for a client to know
whether the server authorizes a public key is by knowing
the corresponding secret key.

Compatibility with existing SSH keys. Our method sup-
ports all SSH key flavors currently supported by default in
OpenSSH: RSA, ECDSA, and EdDSA, which account for
99.7% of SSH keys in use today [9].2 All parties can use a
mixture of key flavors in a single authentication attempt.
Threat model and other security properties. Our security
definition considers an adversary who can steal the secret keys
of honest users. After doing so, the adversary can of course
impersonate the user but all past and future authentication
attempts by honest users still reveal only the minimal infor-
mation described above. This property implies both forward
secrecy and deniability [17,18]. Since the server can simulate
its view of the protocol given only the set of authorized keys,

2The other 0.3% of keys are (non-EC) DSA, which our methods can easily
support, but which is now deprecated in OpenSSH.

3348 31st USENIX Security Symposium USENIX Association

the transcript cannot prove anything to an external party. The
protocol is also secure against adaptive corruptions — i.e.,
parties can become compromised even during the execution
of the authentication protocol.

The server cannot convince the client of a successful au-
thentication unless the server explicitly knows one of the
client’s public keys. This feature does not completely prevent
session interception (as in Attack 4) against a client who does
not carefully check the server’s key fingerprint upon first use,
but it adds a barrier to such an attack. Such an attack can only
be targeted to a small number of clients/keys, and not done
on a massive scale.

Finally, we prove security in a model where parties can use
the same SSH keys for both traditional and privacy-preserving
authentication.
Implementation and performance. We built a prototype
implementation of our authentication method, as an extension
of OpenSSH server/client. Our authentication method is prac-
tical and scalable. For a typical client and server, with at most
10 keys each, our protocol requires 9 kB of communication
and 12.4 ms of latency for ECDSA/EdDSA keys, or 13 kB
of communication and 226 ms of latency for RSA-3072 keys.
Even for a client with 20 keys and server with 100 keys, our
protocol requires 12 kB of communication and 26.7 ms of
latency for ECDSA/EdDSA keys, or 54kB of communication
and 300 ms of latency for RSA-3072 keys.
Technical overview. We first introduce a variant of broad-
cast encryption called anonymous multi-KEM. A multi-
KEM ciphertext is generated by running (c,m1, . . . ,mn)←
Enc(pk1, . . . , pkn). Think of the resulting c as a ciphertext
addressed to a collection of public keys pk1, . . . , pkn, where
the owner of pki (who knows the matching ski) can decrypt c
to obtain plaintext mi. The multi-KEM is anonymous if the
ciphertext c leaks only the number of recipient public keys,
but nothing about their identities.

In our authentication protocol, the server generates a multi-
KEM ciphertext c addressed to the set of authorized keys. The
client holds a set of secret keys and decrypts c under each one
to obtain a set of candidate plaintexts. If one of the client’s
keys is authorized, then she and the server will now hold a
common plaintext. To determine whether this is the case, the
parties next run a private set intersection (PSI) protocol on
their sets of plaintexts. The goal of PSI is for parties to learn
the intersection of these sets, but nothing else about these
sets. We use a variant of PSI in which the client learns the
contents of the intersection — i.e., the client learns which of
its keypairs was authorized — while the server learns only
whether the intersection was nonempty.

We show how to construct a single anonymous multi-KEM
scheme that simultaneously supports all standard SSH key
flavors: RSA, (EC)DSA, and EdDSA. We also show how to
modify the leading PSI protocol of Rosulek & Trieu [43] to
allow the server to learn (only) whether the intersection is
nonempty.

1.5 Other Related Work

PSI Variants. Our protocol is a kind of private set intersec-
tion (PSI) where the client cannot include pk in its set without
also knowing the corresponding sk. A closely related PSI
variant is authorized PSI (APSI) [11–13], where the client
cannot include m in its set without also knowing a signature
on m from a certificate authority.

In APSI, the protocol implicitly verifies signatures on the
client’s items, but all of these signatures are with respect to a
single verification key (belonging to the certificate authority)
that all parties know. In the case of RSA signatures, the APSI
protocol can take advantage of the algebraic structure of the
certificate authority’s RSA modulus. Our setting is quite dif-
ferent, since the protocol must authenticate potentially many
RSA keys held by the client, each with different moduli that
the server doesn’t even know, since they are part of the client’s
private input.

In our protocol, the client proves a non-empty intersection
by using a PSI where each item has an associated payload.
Posession of this payload serves as proof of the non-empty
intersection. The idea of associating PSI items with payloads
is common (e.g., [13, 21]) and has even been used previously
as a means of authentication [49]. Our specific combination
of MKEM and PSI to authenticate with respect to a set of
public keys is novel, to the best of our knowledge.

Multi-Encryption and Broadcast Encryption. In broadcast
encryption, a sender addresses a single ciphertext to an ad-hoc
group of public keys. Broadcast encryption was first studied in
[4, 27], where it was observed that there exist techniques that
are more efficient than simply encrypting separately to each
receiver. Much of subsequent work on broadcast encryption
involves other features (e.g., revocation, traitor-tracing) that
are orthogonal to our needs.

We use a simple variant of broadcast encryption that we call
multi-KEM. Multi-KEMs appear implicitly in most construc-
tions of broadcast encryption, but as a high-level technique
and not a well-defined primitive. We require the multi-KEM
to be anonymous [28] (sometimes called key-private [3]),
meaning that the ciphertext hides the set of recipients. We
require a weaker confidentiality property (infeasibility of total
plaintext recovery) than is standard for broadcast encryption,
leading to simpler constructions.

One important technique we use in our multi-KEM con-
struction is encoding RSA ciphertexts as outputs of a polyno-
mial; this technique was used previously in constructions of
broadcast encryption in [19, 50].

2 Preliminaries
Definition 1. Let G generate a cyclic group G of order ℓ.
The gap computational Diffie–Hellman (GapCDH) assump-
tion [38] for G states that it is computationally hard to find
Gab from Ga and Gb, even with an oracle for solving the de-

USENIX Association 31st USENIX Security Symposium 3349

cisional Diffie–Hellman problem. More precisely, every PPT
adversary A has negligible probability to win the game:

a,b← [0, ℓ)∩Z
GUESS(X ∈G,Y ∈G,Z ∈G):

return dlogG(X) ·dlogG(Y)
?
= dlogG(Z) mod ℓ

win if A GUESS(·)(Ga,Gb) = Gab

2.1 Signatures
Definition 2. A signature scheme is a collection SS of PPT
algorithms

(pk,sk)← SS.Gen(opts)

s← SS.Sign(sk,m)

v := SS.Verify(pk,m,s)

for opts ∈ SS.OPTS, pk,sk,m,s ∈ {0,1}∗, and v ∈ {0,1},
satisfying correctness: when these algorithms are executed
as above, v = 1 except with negligible probability.

Definition 3. A signature scheme SS satisfies existential un-
forgeability under chosen message attacks (EUF-CMA) if
for all opts ∈ SS.OPTS, every PPT adversary A has negligi-
ble probability of winning the game:

M := {}
(pk∗,sk∗)← SS.Gen(opts)

SIGN(m):
M := M∪{m}
return SS.Sign(sk∗,m)

(m,s)← A SIGN(·)(pk∗)
win if m /∈M∧SS.Verify(pk∗,m,s)

3 Anonymous Multi-KEM
In this section we introduce our encryption abstraction, called
a multi-KEM. Multi-KEM allows a sender to generate a ci-
phertext c addressed to a set of public keys. Each correspond-
ing secret key may decrypt c to a different value. The sender
does not need to choose these values, but she learns them
when encrypting, as in a typical KEM.

Definition 4. A multi-KEM (MKEM) is a collection MKEM
of PPT algorithms

(pk,sk)←MKEM.Gen(opts)

(c,r)←MKEM.Enc({pk1, . . . ,pkn})
m := MKEM.Msg(pk,r)

m′ := MKEM.Dec(sk,c)

for opts ∈MKEM.OPTS and pk,sk,c,r,m,m′ ∈ {0,1}∗, satis-
fying correctness: no adversary can pick public keys to make
decryption fail for an honestly generated key. I.e., for all
opts ∈MKEM.OPTS, every PPT A has negligible probability
of winning the game:

(pk,sk)←MKEM.Gen(opts)
PK← A(pk)
(c,r)←MKEM.Enc({pk}∪PK)
win if MKEM.Msg(pk,r) ̸= MKEM.Dec(sk,c)

Note that instead of having Enc output the set of plaintext
values, we have Enc output some state r, which the sender can
further use to determine one receiver’s output via Msg(pk,r).
This choice of syntax simplifies some parts of our protocol.

We require a relatively mild security definition for a
MKEM. In our eventual protocol, MKEM plaintexts are used
only as inputs to a private set intersection (PSI) protocol. The
PSI protocol exposes to the adversary an oracle for verifying
guesses of MKEM plaintexts — i.e., the adversary learns no
more than whether one of its PSI inputs (guesses) is equal
to one of the honest party’s MKEM plaintexts. Hence, our
security definition requires that total plaintext recovery is in-
feasible, even in the presence of oracles for verifying guesses
of plaintexts (from either MKEM.Dec or MKEM.Msg). We call
this security notion weak chosen ciphertext attack (wCCA)
security.

Definition 5. A multi-KEM MKEM is secure against
weak chosen ciphertext attacks (wCCA) if for all opts ∈
MKEM.OPTS, every PPT adversary A has negligible proba-
bility of winning the game:

R := empty
(pk∗,sk∗)←MKEM.Gen(opts)

ENCRYPT(PK):
(c,r)←MKEM.Enc({pk∗}∪PK)
R[c] := r
return c

GUESS_DEC(c,m):

return MKEM.Dec(sk∗,c) ?
= m

GUESS_MSG(c,pk,m):
if R[c] defined:

return MKEM.Msg(pk,R[c]) ?
= m

(c,m)← A ENCRYPT,GUESS_DEC,GUESS_MSG(pk∗)

win if R[c] defined∧MKEM.Dec(sk∗,c) = m

Note that adversarially chosen public keys can be input to
GUESS_MSG. This models an attack scenario for the eventual
protocol, where the adversary may create a public key related
to an honest user’s key, rather than generating them honestly.
Such related public keys may have related MKEM plaintexts.
However, including GUESS_MSG in this game guarantees that
that checking guesses of these related plaintexts will not be
useful for attacking the protocol.

We additionally require that MKEM ciphertexts leak a
minimal amount about the set of recipient keys. The nature of
the leakage varies by scheme, so we let the leakage function
be a parameter of an MKEM scheme. The leakage function

3350 31st USENIX Security Symposium USENIX Association

parameterizes what a MKEM ciphertext reveals about the
honestly-generated recipient keys, while we assume that the
ciphertext can leak arbitrary information about adversarially
chosen keys. The bound on leakage holds even to adversaries
who know the secret keys of all honestly generated keypairs,
and learn the sender’s state value r:

Definition 6. MKEM is anonymous except for leakage
MKEM.Leak if there is a PPT simulator (AnonSim,AnonView)
such that the following oracles are indistinguishable.

PK∗ := {}
GENERATE(opts):
(pk,sk)←MKEM.Gen(opts)
PK∗ := PK∗∪{pk}
return (pk,sk)

ENCRYPT(PK):
(c,r)←MKEM.Enc(PK)
for pk ∈ PK\PK∗:

M[pk] := MKEM.Dec(r,pk)
return (c,r,M)

PK∗ := {}
SK := empty

GENERATE(opts):
(pk,sk)←MKEM.Gen(opts)
PK∗ := PK∗∪{pk}
SK[pk] = sk
return (pk,sk)

ENCRYPT(PK):
L := MKEM.Leak(PK)
(c,M,v)← AnonSim(L,PK\PK∗)
S := {SK[pk] | pk ∈ PK∩PK∗}
r← AnonView(v,S)
return (c,r,M)

3.1 Joint Security
Existing SSH keypairs are essentially signing keys, but our
new authentication method requires us to treat them as
MKEM keys. In order for the existing uses of these SSH
keys to remain valid, we must consider joint security of an
MKEM and signature scheme using the same keypair.

Definition 7. MKEM is a jointly secure multi-KEM and sig-
nature scheme (MKEMSS) if it satisfies both correctness
definitions (with the same Gen), and is both EUF-CMA and
wCCA secure when the adversary is given the oracles from
both of those games simultaneously. Formally, every PPT
adversary has negligible chance of winning the game:

R,M := {}
(pk∗,sk∗)←MKEM.Gen(opts)

// ENCRYPT, GUESS_DEC, GUESS_MSG as in Definition 5
// SIGN as in Definition 3

(c,m,σ)← A ENCRYPT,GUESS_DEC,GUESS_MSG,SIGN(pk∗)

win if [R[c] defined∧MKEM.Dec(sk∗,c) = m]

∨ [m /∈M∧MKEM.Verify(pk∗,m,σ)]

3.2 Instantiations
We describe MKEMSS constructions for the standard SSH
key flavors: EdDSA, (EC)DSA, and RSA.

3.2.1 EdDSA
EdDSA [5] is a particular way of instantiating Schnorr sig-
natures over twisted Edwards curves such as Ed25519. Let

G be a point on elliptic curve E that generates a subgroup G
of prime order ℓ. Let f be the cofactor of the curve, and let
M ⊆ fZ the set of exponents (to clear cofactors).

The nonce r is chosen deterministically in EdDSA by eval-
uating a PRF, F : {0,1}2λ×{0,1}∗→ Z/ℓZ. The PRF key h
is part of the private key.3 The Schnorr challenge comes from
a random oracle H : E×E×{0,1}∗→ Z/ℓZ.

EdDSA.Gen():
a←M
h←{0,1}2λ

return (Ga,(a,h))

EdDSA.Verify(A,m,(R,s)):

return Gs ?
= R+AH(R,A,m)

EdDSA.Sign((a,h),m):
r := F(h,m)
R := Gr

s := (r+H(R,A,m)a) mod ℓ
return (R,s)

The corresponding multi-KEM is based on elliptic curve
Diffie–Hellman, reusing a single ECDH message for all public
keys. Since Enc does not depend on the public keys at all, it
trivially satisfies the anonymity definition with no leakage.

EdDSA.Enc(PK):
r←M
return (Gr,r)

EdDSA.Msg(pk,r):
return pkr

EdDSA.Dec((a,h),C):
return Ca

We prove the joint security of EdDSA under the GapCDH as-
sumption, using a variant of the well-known proof for Schnorr
signatures. A similar proof of joint security for Schnorr and
Diffie–Hellman was given in [14].

Lemma 8. Any attack A against the joint security of the
MKEMSS EdDSA implies an attack A ′ against the GapCDH
problem. A ′ takes approximately twice the computation of A ,
and

Adv[A]≤

√
qH

(
Adv[A ′]

P2 +
1
ℓ

)
+

qHqS

ℓ
,

where A makes qH queries to the random oracle H and re-
quests qS signatures.

Proof. See the full version of this work.

The slack in the concrete security bound is common to
security proofs for Schnorr signatures based on the forking-
lemma, and can typically be improved by an analysis in the
stronger generic group model (GGM) [37].

3.2.2 ECDSA

ECDSA is another signature scheme based on ECC, and hence
our multi-KEM for ECDH is essentially the same as the one
for EdDSA. Let E, G, and ℓ be the same as above.

3Implementations compress the two parts of the private key using a PRG.

USENIX Association 31st USENIX Security Symposium 3351

ECDSA.Gen():
a← [1, ℓ)∩Z
return (Ga,a)

ECDSA.Enc(PK):
r← [1, ℓ)∩Z
return (Gr,r)

ECDSA.Msg(A,r):
return Ar

ECDSA.Dec(a,C):
return Ca

ECDSA.Sign(a,m):
k← [1, ℓ)∩Z
r := (Gk)x mod ℓ

s := H(m)+ra
k mod ℓ

return (r,s)

ECDSA.Verify(A,m,(r,s)):

if 0≡ rs mod ℓ:
return 0

return r ?
=
(

G
H(m)

s A
r
s

)
x

Unfortunately, all known proofs of ECDSA’s security de-
pend on highly idealized assumptions. Specifically, the con-
version operation (R)x that gets the x-coordinate of a curve
point has to be idealized [20]. Brown [7] proved security in
the Generic Group Model (GGM); a generic group does not
have meaningful x-coordinates, so this implicitly turns (R)x
into a random oracle. Later, Fersch et al. [20] proved security
using only an idealized model for (R)x, without the GGM.

A similar joint encryption and signature scheme was proven
in the GGM [14]. We adapt their result to our scheme (proof
included in the full version):

Lemma 9. If H is collision resistant and zero-finder-resistant,
then ECDSA is a jointly secure MKEMSS in the GGM.

3.2.3 RSA
There are several methods for sampling RSA keypairs, and
we let the opts argument to Gen specify the method of choice.
SSH keypairs use RSASSA-PKCS1-v1_5 signatures [33],
outlined below. To encode the message to be signed, it uses
a padding scheme, PKCSN : {0,1}∗→ Z/NZ, the details of
which are unimportant for our purpose.

RSA.Sign((N,e,d),m):
return PKCSN(m)d

RSA.Verify((N,e),m,s):

return se ?
= PKCSN(m)

It is trivial to construct a KEM for a single recipient by
simply using bare RSA as a trapdoor function. Padding is
both undesirable for anonymity, and unnecessary since the
plaintext is uniformly random in Z/NZ.

RSA.Enc1((N,e)):
r← Z/NZ
return (re mod N,r)

RSA.Dec1((N,e,d),c):
return cd mod N

Constructing an anonymous multi-KEM is non-trivial. Un-
like the Diffie–Hellman approach which works for ECC keys,
RSA encryptions depend on the public key, so a multi-KEM
must generate separate ciphertexts for each recipient. This cre-
ates two problems for anonymity: an individual RSA cipher-
text leaks some information about its public key N, since it is a
number in [0,N), and RSA.Dec must somehow be told which
ciphertext to decrypt for which keypair. We solve the first
problem by encoding the ciphertext into an (approximately)

RSA.Enc(PK):
S := {}
R := empty map
for (N,e) ∈ PK:

c,r← RSA.Enc1((N,e))
R[(N,e)] := r
c0, . . . ,cs(N)−1← ChkN(c)
for i := 0 to s(N)−1:

S := S∪{(H(N,e, i),ci)}
return interpolF(S),R

ChkN(c):
p← [0,22λs(N))∩Z
p′ := p− (p mod N)
c′ := p′+ c
for i := 0 to s(N)−1:

ci := c′ mod 22λ

c′ :=
⌊
c′/22λ

⌋
return c0, . . . ,cs(N)−1

RSA.Msg(pk,R):
return R[pk]

RSA.Dec(sk,C):
N,e,d := sk
for i := 0 to s(N)−1:

ci :=C(H(N,e, i))
c := UnchkN({ci}i)
m := RSA.Dec1(sk,c)
return m

UnchkN(c0, . . . ,cs(N)−1):

c :=
s(N)−1

∑
i=0

22λici

return c mod N

uniformly random integer c′ ∈ [0,22λs(N)), by adding some
padding p′, which is a random multiple of N below 22λs(N).
Here, s(N) =

⌈
ℓ(N)+λ

2λ

⌉
is chosen to lengthen c′ enough to

be almost uniform, while padding it to be a multiple of
2λ bits long, and ℓ(N) is the size of the public key N, so
2ℓ(N)−1 < N < 2ℓ(N).

To handle the second problem, we encode the public-key-
to-ciphertext mapping in a polynomial. Essentially, the sender
generates a polynomial C such that C(pk) = c′ for each key
pk and associated ciphertext c′. The coefficients of the poly-
nomial leak nothing about the pk’s if the c′ values are jointly
pseudorandom. However, this would require a very large field
since RSA keys and ciphertexts are rather large. Instead, our
Multi-KEM sender divides c′ into chunks c0, . . . ,cs(N)−1, each
of size 2λ bits. She then encodes a polynomial C(x) such that
C(H(pk, i)) = ci for each chunk ci, where H is a collision-
resistant hash. Dec then evaluates this polynomial at H(pk, i)
for each i, combines the chunks into a ciphertext c′, and then
decrypts it. We set the chunk size to 2λ bits because H needs
to be a collision resistant hash. The result is polynomial oper-
ations in a field F of order very close to 22λ.

Interpolation of a degree-n polynomial requires Θ(n log2 n)
field operations. Instead of a polynomial, it is possible to use
any oblivious key-value store (OKVS) [22], a generalization of
polynomials. There exist more asymptotically efficient OKVS
constructions, but we found simple polynomial interpolation
to be sufficiently fast for the small set sizes in our setting.

PKCS signatures lack a security reduction to the RSA as-
sumption, so we cannot prove the joint security of RSA based
on (·)e mod N being one-way. However, we can do the next
best thing: prove joint security under the assumption that the
signature scheme is secure.

3352 31st USENIX Security Symposium USENIX Association

Lemma 10. The EUF-CMA security of the RSA signature
scheme implies that RSA is a jointly secure MKEMSS.

Recall that joint security requires that the scheme satisfy
weak-CCA security (Definition 5). In particular, it should be
hard to guess the decapsulation of a KEM ciphertext, even
given an oracle for checking such guesses. In the case of RSA,
the adversary already has the ability to test whether a guess is
correct: To test whether m = cd = RSA.Dec1((N,e,d),c) for
some guess m, the adversary can simply test whether me = c,
using only public information. This algebraic property of RSA
renders the GUESS_DEC and GUESS_MSG oracles redundant,
and greatly simplifies the security proof compared to the
Diffie-Hellman-based MKEMs. The proof details are defered
to the full version.

Finally, we need to show anonymity with respect to a leak-
age function. For properly generated public keys, ChkN will
produce uniformly random chunks, so C will be a uniformly
random polynomial with degree less than s(PK), where s(PK)
is the sum of s(N) for all the public keys in PK. That is, only
the combined length of all public keys needs to be leaked.4

Lemma 11. RSA is an anonymous MKEM with respect to
leakage RSA.Leak(PK) = s(PK).

Both proofs for the RSA MKEM are given in in the full
version.

3.2.4 Mixing Key Flavors

SSH allows users to authenticate themselves with many differ-
ent keypair flavors. To achieve the same property, our authen-
tication protocol requires a single multi-KEM where encryp-
tions can be addressed to a mixture of different key flavors.
We build such a multi-flavor MKEM by simply concatenating
a separate MKEM ciphertext for each key flavor.

The mixed-flavor multi-KEM (which we call MixKEM) is
parameterized by a set FLAVORS of supported key flavors.
The key generation of MixKEM expects a particular flavor as
one of its options, and keys in the MixKEM scheme are of the
form (f,pk) where pk is a key of flavor f.

MixKEM.OPTS=

{
(f,opts)

∣∣∣∣ f ∈ FLAVORS,
opts ∈ f.OPTS

}

4Adversarial public keys can be malformed so that RSA.Enc1 does not
generate a uniformly random element of Z/NZ, e.g. by picking an e that is
not coprime to λ(N). Recall that MKEM ciphertexts need not hide anything
about adversarially generated keys.

MixKEM.Gen((f,opts)):
(pk,sk)← f.Gen(opts)
return (f,pk),(f,sk)

MixKEM.Sign((f,sk),m):
return f.Sign(sk,m)

MixKEM.Verify((f,pk),m,s):
return f.Verify(pk,m,s)

MixKEM.Dec((f,sk),C):
if C[f] undefined:

return ⊥
return f.Dec(sk,C[f])

MixKEM.Enc(PK):
F := {f | (f,pk) ∈ PK}
C,R := empty map
for f ∈ F :

PKf := {pk | (f,pk) ∈ PK}
c,r← f.Enc(PKf)
C[f] := c
R[f] := r

return C,R

MixKEM.Msg((f,pk),R):
return f.Msg(pk,R[f])

Regarding anonymity, we must characterize what in-
formation MixKEM.Enc(PK) leaks about the public keys
in PK. Let F and PKf be defined as in MixKEM.Enc.
Clearly, MixKEM.Enc(PK) leaks F (the set of flavors present),
and it also leaks any information from each flavor’s
f.Enc(PKf). Therefore, the leakage function for MixKEM is
MixKEM.Leak(PK) = {(f, f.Leak(PKf)) | f ∈ F}.

The following lemmas are proven in the full version:

Lemma 12. MixKEM is a jointly secure MKEMSS if every
flavor in FLAVORS is.

Lemma 13. MixKEM is anonymous, assuming that every
f ∈ FLAVORS is, with advantage is bounded by the total
advantage against all the individual flavors’ anonymities.

MixKEM is subject to some tradeoffs between efficiency
and leakage. For example, MixKEM.Enc could be made to al-
ways generate ciphertexts for some set of commonly used fla-
vors, thereby not leaking whether they are present in PK. Key
flavors beyond RSA (including EdDSA and ECDSA) could be
encoded into a single polynomial,5 which would leak no more
than the total size of all ciphertexts. Our choice of MixKEM
was motivated largely by simplicity. Finally, note that ECDSA
keys can be instantiated over a variety of different curves, and
each curve correpsonds to a different MKEM flavor.

4 Security Definition
We present our formal security definition in the form of an
ideal functionality in the UC framework, in Figure 2. The
functionality is somewhat complicated and subtle, so we pro-
vide intuitive explanations of its main features below.

Keys. The functionality’s genkey command generates and
logs a keypair to model the local process of key generation
by honest parties. We consider an adversary who is capable
of stealing honest users’ secret keys; this is modeled by the
functionality’s stealkeys command.

Keys can be classified into 3 categories with respect to the
ideal functionality: (1) A key generated by an honest user

5Encoding into a polynomial requires the ciphertexts to be pseudorandom
bit strings. This could be achieved for EC-based schemes, e.g., with the
Elligator [6] technique.

USENIX Association 31st USENIX Security Symposium 3353

Parameters:
• Parties P1,P2, . . .
• A signature scheme SS = (Gen,Sign,Verify).
• Function L characterizing leakage on server’s set.

Static variables:
• Sets Σ and Secure; associative arrays SK1,SK2, . . .

Define predicate:

can_use(Pi,pk) =

{
SKi[pk] defined, Pi honest
pk ̸∈ Secure, Pi corrupt

On input (genkey,opts) from party Pi:
1. Do (sk,pk)← Gen(opts) and set SKi[pk] := sk.
2. If Pi is honest: add pk to Secure.
3. Give pk to Pi.

On input (get_sk,pk) from the adversary:
4. If SKi[pk] is defined for some i, then give that SKi[pk]

to the adversary.

// simulator can send this command only when the real-world
// adversary compromises Pi’s storage
On input (stealkeys,Pi) from the adversary:
5. Set Secure := Secure\{pk | SKi[pk] defined}.
6. Give SKi to the adversary.

On input (sign,pk,m) from Pi:
7. If ¬can_use(Pi,pk): abort.
8. Add (pk,m) to Σ.
9. Give Sign(SKi[pk],m) to Pi.

On input (verify,pk,m,σ) from any party:
10. If pk ∈ Secure and (pk,m) ̸∈ Σ: respond false.
11. Otherwise respond with Verify(pk,m,σ).

// authentication attempt between server PS & client PC
On input (auth1,(PS,PC,ssid),KS) from PS:
12. If PC is corrupt, give leakage to the adversary:(

L(KS), {pk ∈ KS | ∀i : SKi[pk] undefined}
)
.

13. Wait for command (auth2,(PS,PC,ssid),KC) from PC.
14. Give |KC| to PS.
15. Wait for command (auth3,(PS,PC,ssid),K′S) from PS.
16. If PS is corrupt: set KS := K′S (otherwise ignore K′S).
17. Compute A := KS∩KC∩{pk | can_use(PC,pk)}.
18. Give (A, |KS|) to PC.
19. Wait for command (deliver,ssid,d ∈ {0,1}) from PC.
20. Give d∧ [A ̸= /0] to PS.

Figure 2: Ideal functionality Fnew-auth defining the security of our
new public-key authentication method.

is initially considered secure and stored in the set Secure
(line 2). (2) A secure key becomes stolen when the adversary
calls the stealkeys command on the owner of that key. (3)
Parties can invoke the functionality’s commands on keys that
were not generated by honest parties. We call such keys as
unregistered, and they are treated as adversarially generated.

The functionality uses a predicate can_use to decide
whether a user is allowed to use a key for authentication or
signing.

• Honest users can only use keys that they generated hon-
estly, regardless of whether they are secure or stolen.

• Corrupt users can only use stolen or unregistered keys,
but not secure keys.

In our security proof, we restrict our focus to simulators
that call stealkeys only when the real-world adversary com-
promises a party’s actual key storage. Hence stealkeys in
the ideal world captures key compromise in the real-world,
and stealkeys is the only way for an adversary to gain an
advantage in the real world, with respect to the can_use pred-
icate. In the ideal world, knowledge of the sk values offers no
advantage to an adversary. We therefore allow the ideal-world
simulator to learn these sk values (via the get_sk command),
which is helpful in our security proof. Again, we emphasize
that giving all sk values to the ideal-world adversary does
not help that adversary authenticate or forge signatures under
more keys, if they don’t also send a stealkeys command.

Authentication. A server PS and client PC can perform an
authentication session using a sequence of auth commands.
Each party provides a set of public keys: KS,KC respectively.
The client learns the intersection A = KS ∩KC (line 17-18).
If the client is corrupt, then it learns further leakage on the
server’s set KS, as well as the unregistered keys in KS (line
12). Leaking the set of unregistered keys is necessary for our
security proof, but it does no harm to honest users since their
keys are always registered. The server learns only |KC| (line
14) and whether the intersection A is nonempty (line 20).

We say that the client “successfully authenticates” under a
key if that key is in the set A. A client can only authenticate
under keys for which it satisfies the can_use (line 17).

If the intersection is nonempty, the client can make the
server think that the intersection is empty (line 19-20, d = 0) —
this relaxation of correctness is needed to model our eventual
protocol. However, lying in this way is not beneficial for the
client with respect to authentication. The client can never
make an empty intersection seem nonempty.

Signing. We model a setting where users can use the same
keypairs both for our new authentication protocol and for
traditional authentication as well. Since traditional authen-
tication uses a simple challenge-response protocol and uses
keypairs for signing, it suffices for our functionality to provide
a way for parties to sign and to verify signatures with their
keypairs (sign and verify commands). Honest parties will
always use the functionality to sign and verify.

If a key is secure with respect to the functionality, then
the functionality’s verify command will reject signatures
on messages that weren’t originally generated by the key’s

3354 31st USENIX Security Symposium USENIX Association

owner (lines 8,10).6 In short, if a client PC honestly generates
its keypair, and an adversary has not stolen its secret key,
then PC is the only party that generate signatures (on new
messages) that verify properly.

The functionality does not provide any particular unforge-
ability guarantee for stolen or unregistered keys. Instead, it
simply runs the signature scheme’s Verify algorithm, so that
the real and ideal worlds match (line 11).

Key agreement. In our envisioned application within SSH,
client and server first perform key agreement and then au-
thenticate each other. Hence, our authentication protocol can
safely assume that a secure point-to-point channel already
exists between client and server. Our protocol can be exe-
cuted within this secure channel.7 This means that our ideal
functionality does not need to deal with the complexities of
defining key agreement — i.e., giving a common random key
to both parties iff the client is authorized — it merely needs to
give the server the answer to whether the client is authorized.

Other properties. Invoking stealkeys does not allow the
adversary to learn whether the newly-stolen keys were used in
any past authentication attempts, by either the client or server.
In other words, our protocol is fully deniable for both parties.

Another interesting property is that a server cannot con-
vince the client that authentication has succeeded, unless the
server explicitly knows (and commits to) one of the client’s
public keys. This property makes it harder (though not im-
possible) for a corrupt server to intercept SSH connections
intended for another server, as in Attack 4 that we describe in
Section 1. Such an attacker would need to target specific user-
s/keys, and would not be able to easily intercept connections
on a much larger scale.

5 Main Protocol
Our authentication protocol follows the high-level outline
presented in Section 1.4. Namely, the server encrypts a multi-
KEM ciphertext to the set of authorized public keys. The
client decrypts this ciphertext under each of its secret keys.
Finally, the parties perform a private set intersection (PSI),
using the plaintexts that they obtained from the multi-KEM.
The resulting intersection is non-empty if and only if the client
holds an authorized secret key.

We require a flavor of PSI in which the client learns the
contents of the intersection, and the server can learn whether
the intersection was non-empty. However, it does no harm if
the client can choose whether to prove that the intersection
was non-empty — choosing not to do so only prevents au-
thentication from succeeding. Later in Section 6 we describe

6If the key owner generates a signature σ on m, then the functionality does
not rule out the possibility of an adversary generating a different signature σ

on the same m. This corresponds to weak unforgeability, and such a relaxation
is necessary because ECDSA is only weakly unforgeable.

7We assume that parties will incorporate a transcript of the key agreement
session as part of their session id ssid to further bind our authentication
protocol to their secure channel.

Behavior:
1. Await command (input,(PS,PC,ssid),MC) from PC.
2. Give |MC| to PS.
3. Await command (input,(PS,PC,ssid),MS) from PS.
4. Compute I = MS∩MC and give (I, |MS|) to PC.
5. Await command (deliver,ssid,d ∈ {0,1}) from PC.
6. Give d∧ [I ̸= /0] to PS.

Figure 3: Ideal functionality Fpsi+ for PSI-with-emptiness.

On command (genkey,opts) to party Pi:
1. Pi: Run (sk,pk)← Gen(opts) and set SKi[pk] := sk.

// adversary learns SKi when it compromises Pi’s storage.
2. Pi: Output pk.

On command (sign,pk,m) to party Pi:
3. Pi: If SKi[pk] not defined: abort.
4. Pi: Run Sign(SKi[pk],m) and return the result.

On command (verify,pk,m,σ) to party Pi:
5. Pi: Run Verify(pk,m,σ) and return the result.

On command (auth1,(PS,PC,ssid),KS) to party PS:
6. PS: Generate (c,r)← Enc(KS) and send c to PC.
7. PC: Await command (auth2,(PS,PC,ssid),KC) and set:

MC :=
{〈

pk,Dec(SKC[pk],c)
〉∣∣∣∣ pk ∈ KC and

SKC[pk] defined

}
.

8. PC: Send (input,(PS,PC,ssid),MC) to Fpsi+.
9. PS: Receive |MC| from Fpsi+ and output it.
10. PS: Await command (auth3,(PS,PC,ssid),−) and set:

MS :=
{〈

pk,Msg(r,pk)
〉 ∣∣∣ pk ∈ KS

}
.

11. PS: Send (input,(PS,PC,ssid),MS) to Fpsi+.
12. PC: Receive output (I, |MS|) from Fpsi+ and output:(

{pk | ∃m : ⟨pk,m⟩ ∈ I}, |MS|
)

13. PC: Await command (deliver,ssid,d) and forward it
to Fpsi+.

14. PS: Receive output e from Fpsi+ and output it.

Figure 4: Our anonymous authentication protocol.

how to construct an efficient PSI protocol with this feature. In
Figure 3 we formally define the security of this PSI variant,
as an ideal functionality in the UC framework.

The formal details of our authentication protocol are given
in Figure 4. For technical reasons, the parties perform the PSI
on a set of ⟨pk,m⟩ pairs rather than plaintext values alone.

5.1 Security Proof

Theorem 14. The protocol in Figure 4 is a UC-secure proto-
col realizing ideal functionality Fnew-auth (Figure 2) against
adaptive adversaries, assuming that MKEM is anonymous
(Definition 6) and a jointly secure multi-KEM and signature
scheme (Definition 7).

USENIX Association 31st USENIX Security Symposium 3355

Proof. We sketch a proof here and defer the details to the
full version. There are two important cases for the simulator,
depending on who is corrupted when the auth session starts.

Case of honest server, corrupt client: In this case, the
simulator obtains leakage on the honest server’s set of pub-
lic keys, as well as all its unregistered public keys. It gen-
erates a dummy ciphertext c by calling MKEM.AnonSim on
that leakage. AnonSim is from the MKEM anonymity defi-
nition, which we use to show that these dummy ciphertexts
are indistinguishable from the real ones. If an honest server is
corrupted adaptively during an auth session, then the simula-
tor must provide a dummy internal state for the server. In this
case the server’s state consists of the r-value from the cipher-
text. The simulator generates an r-value using the AnonView
algorithm from the anonymity definition.

Later, the corrupt client will provide a set of ⟨pk,m⟩ pairs
as input to Fpsi+. The simulator’s main task is to check which
of these ⟨pk,m⟩ pairs is “correct” — i.e., whether m is the
correct decryption of c with respect to key pk. The set of pk’s
having correct decryption values is what the simulator sends
to Fnew-auth as the corrupt client’s extracted input.

The simulator checks the correctness of a ⟨pk,m⟩ pair in
different ways depending on the status of pk:

• If pk is registered, the simulator calls get_sk to learn
the corresponding sk, and computes the correct m as
Dec(sk,c).

• If pk is unregistered, then MKEM.AnonSim already pro-
vided the correct decryption value when generating the
dummy ciphertext.

When a key pk is in Secure, this models a key registered to
an honest party, whose secret key has not yet been stolen by
the real-world adversary. We further use the joint MKEMSS
security of MKEM to argue that the adversary cannot predict
a “correct” decryption with respect to such a secure pk, and
neither can it generate a signature forgery under such a key.
Without knowing correct decryptions under pk, the corrupt
client cannot authenticat under pk.

Case of corrupt server, honest client: In this case there
is no protocol message from the client to simulate in an auth

interaction, and no persistent state held by the honest client to
simulate in the event of an adaptive corruption. The only job
of the simulator is to extract the corrupt server’s input (a set
of keys) to send to the Fnew-auth functionality. The simulator
observes the server’s protocol message c and then later ob-
serves the server’s PSI input, a set of ⟨pk,m⟩ pairs. As before,
the main task of the simulator is to determine which of these
pairs is “correct.”

• If pk is registered by the functionality (secure or stolen),
then it was honestly generated. The simulator can learn
the corresponding sk (via get_sk) and obtain the correct
m as Dec(sk,c).

• If pk is not registered by the functionality, then an honest
client will not attempt to authenticate under it. So the
simulator can safely ignore these keys.

The keys from the server’s PSI input that are associated with
correct decryption values comprise the Fnew-auth input ex-
tracted by the simulator.

6 PSI variant
Our authentication protocol requires a variant of PSI in which
the client learns the contents of the intersection, and then the
client can (optionally) prove to the server that the intersection
was non-empty. Our setting involves relatively small input
sets (e.g., a few hundred items each, at the most). The leading
PSI protocol for sets of this size — in terms of both commu-
nication and running time — is due to Rosulek and Trieu [43]
(hereafter RT21). We adapt the RT21 protocol to provide the
proof-of-nonempty intersection property, to instantiate the
ideal functionality in Figure 3. Here we simply sketch the
main ideas of our simple modification. The details and formal
proof are deferred to the full version of this work.

Nearly all PSI protocols, including RT21, use the oblivious
PRF (OPRF) paradigm of [21]. The parties first run an OPRF
protocol, in which the sender learns a PRF seed k, and a
receiver learns F(k,x) for each x in its set, where F is a PRF.
The sender learns nothing about the x values. To obtain a PSI
protocol, the OPRF sender sends F(k,y) for every y in its set.
The receiver can determine which items are in the intersection
by identifying matching PRF outputs. PRF outputs of items
not in the intersection look random to the receiver.

In order to provide proof of nonempty intersection, we
modify the protocol as follows. The OPRF sender will send
h∗ = H(s) to the client, where s is random and H is a
collision-resistant hash. Suppose the output of F is divided
into two halves F(k,x) = F1(k,x)∥F2(k,x). Then instead of
sending {F(k,x) | x ∈ X} as before, the sender sends pairs
{⟨F1(k,x),Enc(F2(k,x),s)⟩ | x ∈ X}. The receiver can use the
F1-values to identify the intersection as before. For any x
in the intersection, she can decrypt the associated ciphertext
with the key F2(k,x) to recover s, discarding x from the inter-
section if H(s) ̸= h∗. In this way, the receiver learns s if and
only if the intersection is nonempty, so her knowledge of r
can serve as proof of a nonempty intersection.

The formal description of the modified protocol, and a
proof of the following theorem, are provided in the full ver-
sion. We also prove security against adaptive corruption, while
RT21’s original proof considers only static corruption.

Theorem 15. The modified RT21 PSI protocol UC-securely
realizes the Fpsi+ functionality (Figure 3) against adaptive
adversaries, in the ideal cipher + random oracle model, as-
suming a suitable 2-message key agreement scheme exists.

See the full version for the precise criteria needed for the
key agreement scheme. There we also show a suggested

3356 31st USENIX Security Symposium USENIX Association

scheme that satisfies these properties under a variant of the
Strong Diffie–Hellman assumption [1].

Other improvements. One of the main components in the
RT21 protocol is a key agreement protocol whose messages
are pseudorandom bit strings. In order to support elliptic-
curve Diffie-Hellman key agreement, the suggested key agree-
ment uses the Elligator technique [6] to encode elliptic curve
elements as uniform bit strings. We observe that a different
technique of Möller [32] results in elliptic-curve-based key
agreement at roughly half the computational cost. The details
are given in the full version.

7 Implementation and Evaluations
Implementation. We implemented our protocol in C++ and
integrated it into both the client and server of OpenSSH ver-
sion 8.2p18. We implemented the Multi-KEMs for RSA,
ECDSA, and EdDSA as described in Section 3, using
OpenSSH and libsodium. We also adapted the implemen-
tation of the RT21 PSI protocol [43], with the modifica-
tions described in Section 6. Namely, we added the proof-
of-nonempty-intersection feature, and also incorporated an
improved technique for the underlying key agreement. The
implementation of the RT PSI protocol uses Rijndael as a
256-bit ideal cipher and SHA-256 as a random oracle.

OpenSSH delegates sensitive signing operations to a sep-
arate ssh-agent daemon process, which provides a signing
oracle to the SSH client. Since our protocol uses SSH keys
as KEM keys, we added an additional KEM decryption inter-
face to ssh-agent. The remainder of the protocol is imple-
mented in the SSH client/server processes (i.e., ssh and sshd).
Upon publication, we will make the source code available on
GitHub under the same BSD license that OpenSSH uses.

7.1 Experimental Setup

Hardware. All experiments use two desktop machines with
32-core AMD Threadripper 2990WX running at 3.0Ghz, run-
ning Ubuntu 20.04 LTS with 32GB DRAM. We use one
machine as SSH server and the other for running many SSH
clients. While the SSH server utilizes multiple cores for han-
dling multiple clients, we do not use multiple cores to paral-
lelize our authentication protocol.
Network. We ran microbenchmarks over the loopback device
to focus on computation time. To simulate realistic network
conditions in a macrobenchmark, we used the tc traffic con-
trol utility to add 42.5 ms latency: the average of local (20ms
within US west coast) and distant (65ms between east and
west coast) latencies reported in [48].
Keys. We performed SSH authentication on a range of key
configurations. For our microbenchmarks, we considered sets
of keys that were RSA-only (RSA-3072, which is the default
RSA key size in OpenSSH), EdDSA-only, and ECDSA-only.

8Our implementation is available at https://github.com/osu-crypto/
PSIPK-ssh

Hence, we explore the effect of key flavor on our protocol’s
performance. In our macrobenchmark we used a mixture
of keys: 92% RSA, 7% EdDSA, and 1% ECDSA, to model
realistic proportions of key flavors according to Github statis-
tics [9]. We also present macrobenchmark results with 100%
EdDSA keys to demonstrate optimal performance.

We tested clients and servers with different numbers of
keys: We considered clients with 5 (normal user) and 20
(heavy user) keys. We considered servers with 10 (private
server), 100 (mid-sized git repository), and 1000 (popular git
repository) keys.
Reported numbers. For each test case, we report the average
over 10 executions. For comparison, we also measure the
cost of vanilla SSH public-key authentication under the same
network/system setup.

7.2 Evaluation Results

Microbenchmark: performance breakdown. We con-
ducted a microbenchmark of our protocol to investigate the
computation time required for each step. Figure 5 (in ap-
pendix) shows the results.
Legend. We divided the protocol’s computational tasks into
the following phases, and measured the time taken by each:
First, the server parses the authorized user’s keys file (parse),
and encrypts the KEM ciphertexts (kem.enc). It must inter-
polate a polynomial containing all of the RSA ciphertexts
(rsa_interpolate). The KEM messages are then computed
by the server (kem.msg). After receiving the KEM ciphertexts
from the server, the client decrypts them using its private keys
and generates a PSI polynomial (client.kem). The server
evaluates this polynomial, and generates a challenge for the
client (server.psi). Finally, the client solves this challenge
(client.psi), and the server verifies the solution (verify). A
test case named “X_Y” indicates that the server has X number
of authorized keys and the client has Y number of available
private keys for authentication. e.g., 1000_20 refers to a server
with 1000 keys and a client with 20 keys, corresponding to a
heavy user authenticating to a very popular git repository.
RSA. RSA keys are the slowest among three key flavors.
For a huge number of keys on the server, e.g., 1000_5 and
1000_20, authentication takes 1,155 ms and 1,196 ms, re-
spectively, while authentication with fewer than 100 keys
needs less than 300 ms. For the server, kem.enc and
rsa_interpolate took the majority of computation time. Be-
cause the time increases linearly with the number of autho-
rized keys on the server, these tasks dominate when the server
has many keys. For the client, the client.kem task increases
proportionally to number of keys from both server and client.
In the case of relatively many keys for the client relative to
the server, the client.kem cost overwhelms the computing
time, as shown on 100_20, 10_20, and 10_5.
ECDSA and EdDSA. Both ECDSA and EdDSA are signifi-
cantly faster than RSA, and the performance characteristics

USENIX Association 31st USENIX Security Symposium 3357

https://github.com/osu-crypto/PSIPK-ssh
https://github.com/osu-crypto/PSIPK-ssh

Figure 5: Microbenchmark result per each key setup. For each type of key, we vary the number of keys at the client side for 5 and 20, and we
also vary number of authorized keys at the server side for 10, 100, and 1000.

Auth-type Key-conf RSA ECDSA EdDSA

PSI 100_20 54188 12116 12174
PSI 10_20 13340 8972 9228

Vanilla 10_5 12742 10036 9572
Vanilla 10_1 9642 8582 8242

Table 1: Total communication (in bytes) for a successful authentica-
tion, under various key configurations and key flavors. Note that we
do not test 100 keys on the server for vanilla authentication because
communication cost does not depend on the server’s set of keys in
vanilla authentication.

of these two are very similar. Even with 1000 keys on the
server, the authentication finishes in less than 216 ms. With
fewer than 100 keys, it finishes in less than 27 ms, which is
comparable to a typical network delay. Thus, the effect on
the user would be negligible. For these two key types, server-
side computation time dominates the entire execution time.
The difference between ECDSA and EdDSA is that ECDSA
requires more time to parse the key. However, EdDSA re-
quires more time on kem.msg, resulting in less than 1% time
difference for 1000_20: 214.83 ms vs. 214.89 ms.

Communication cost. The new protocol incurs not only com-
putational overhead but also overhead in communication. We
measure the communication cost of our protocol and compare
it to vanilla SSH authentication. Table 1 shows the results.
With 10 keys on the server and 20 keys on the client, com-
munication overhead for all key flavors is negligible when
compared to the vanilla authentication with 5 keys on the
client. When increasing the server-side key number to 100,

the message size for both ECDSA and EdDSA does not in-
crease much in size (from 9 kB to 12 kB). However, RSA
requires 54 kB of message transfer, which incurs around 4.25
times more in communication when compared to the vanilla
10_5 case. For vanilla with five client keys, we use the 5th key
for authentication, and thereby include four trials of failed
public key probing.

Macrobenchmark: server authentication throughput. We
macrobenchmark our protocol, measuring the authentication
throughput (in reqs/min, at the server side) and latency (in
seconds, at the client side). Figure 6 shows the results. Below,
we report throughput and latency at the maximum throughput
and compare it to the vanilla SSH authentication.

For mixed key setup (mixed according to Github statistics),
a server with 10 keys can process up to 5,003 reqs/min (83.4
reqs/sec), with clients observing up to 0.83 second of latency.
A server with 1000 keys can process upto 1,869 reqs/min
(31.1 reqs/sec), with clients observing up to 3.45 seconds of
latency. For pure EdDSA, a server with 10 keys can process
up to 14,964 reqs/min (249.4 reqs/sec), with clients observing
up to 0.24 second of latency. A server with 1000 keys can
process upto 8,981 reqs/min (149.6 reqs/sec) while clients
may observe 0.79 seconds of latency. As we observed in mi-
crobenchmark, RSA keys are much slower than ECDSA/Ed-
DSA keys, and that is also consistent in the macrobenchmark.

We compare this result with the throughput/latency of the
vanilla SSH authentication. For pure RSA keys setup, a server
with 10 keys can process up to 18,560 reqs/min (309.3 re-
qs/sec). This is 3.7 times faster than our protocol with mixed

3358 31st USENIX Security Symposium USENIX Association

Figure 6: Macrobenchmark result for using mixed keys from the Github key statistics [9] and using only EdDSA keys, for 10 and 1000 keys on
the server. In all cases, we use 3 keys on the client side. Each graph shows the number of connections processed in minutes (line, left Y-axis)
and average latency that each client suffers for the SSH authentication (bar, right Y-axis), by increasing number of concurrently connecting
clients (X-axis). Top two graphs are for mixed keys, middle two graphs are for EdDSA. The bottom two graphs show the performance of
vanilla authentication when using RSA keys.

keys, but only 24% faster than our protocol with EdDSA keys.
A server with 1000 RSA keys can process up to 16,500 re-
qs/min (275.0 reqs/sec), which is 8.8 times faster than our
protocol with mixed keys, but only 85% faster than ours with
EdDSA keys.

In conclusion, our protocol runs comparable to the vanilla
SSH authentication when used with ECDSA/EdDSA keys.

8 Discussions
In this section we discuss security, privacy, and usability issues
arising from integrating our protocol into SSH.
Passphrase-protected SSH keys. SSH clients allow users to
protect keys with a passphrase, which must be entered interac-
tively before that key is used for authentication. In a standard
authentication, the client software can collect the passphrase
from the user only if the server requests authentication under
that key. In our authentication method, the client effectively

USENIX Association 31st USENIX Security Symposium 3359

makes authentication attempts under all of its keys. There-
fore, a user may need to enter passphrases to all keys while
running our authentication method. Thankfully, ssh-agent
can be configured to only require a passphrase once during
the life of the ssh-agen process (e.g., per reboot).

Integrating to Git/SSH. Our protocol assumes that the server
has identified the set of authorized keys at the time of au-
thentication (e.g., from ~/.ssh/authorized_keys). Not all
applications may be compatible with this requirement.

We illustrate the issue using Github as an example. When
committing changes to GitHub, the SSH connection is
always made to git@github.com. The client reports the
name of the repository only after the SSH authentication,
as git@github.com:username/repository. In other words,
every Github user is authorized to connect to username git.

This is not problematic for standard SSH authentication
because the server identifies the client from its public key. In
contrast, our new protocol would require the server to encrypt
a KEM message to the set of all (73 million as of November
2021 [15]) Github users, which is prohibitively expensive.

In order to integrate our protocol with systems like
Github, the server would need to learn the repository
name before the client authentication step. We believe
that the SSH username, which is indeed sent to the
server before cient authentication, is a natural way to
convey this information. For example, a client who opts
into the new authentication method could use an SSH
connection to, say, repositoryname@new.github.com or
username.repository@new.github.com. All other users
could continue to be supported via SSH connections to
git@github.com. Github users could configure which of
these two git URL styles is presented to them on the Github
website. Repository owners could choose which flavors of au-
thentication to support when connecting to their repositories.

Downgrading attacks and Trust on First Use. A mis-
chevious server can simply claim to not support our privacy-
enhancing protocol. When connecting to such a server, the
client is forced to downgrade to a less private, conventional
authentication method. Clients should be vigilant about such
downgrade attacks, which completely undermine the protec-
tion of our protocol. The same trust-on-first-use (TOFU) pol-
icy for authenticating the server can be applied to this behavior
— e.g., the client software can report an error if the server sup-
ported privacy-preserving authentication in the past but now
claims to not support it, similar to the error when a server’s
public key has changed relative to the known_hosts file.

Size of key-sets. Our protocol leaks an upper bound on the
size of both the client’s and server’s set of keys. This leakage
is another avenue for fingerprinting, although carrying much
less identifying information. Still, users may wish to mitigate
this leakage by padding their key sets with dummy items, up
to some fixed size — e.g., the next power of two.

Server-side probing. A server can choose to run our authen-
tication protocol with a strict subset of the authorized keys.
By varying the subset across repeated authentication attempts,
the server could de-anonymize the client’s choice of key via
a binary search.

However, this attack leads to user-visible authentication
failures, and it requires a client to repeatedly retry after such
failures. We leave open the problem of whether our protocol
could be extended to notify clients of extreme changes in the
server’s set of keys.

One indication of a probing server may be its use of a
very large set of keys. Our protocol reveals the size of the
server’s set to the client, just before the client decides whether
to deliver output to the server. In principle a client could be
configured to refuse connection to a server with a suspiciously
high number of authorized keys.
Other authentication methods. SSH supports a lightweight
certificate system for authentication, but supporting it is well
beyond our scope. Certificates introduce an extra level of
indirection: the server knows the root signing key but not the
keys of individual users, so the protocol would need to verify
two steps of the trust chain. SSH also supports hardware-
token-based keys. These tokens support only signing, and
not KEM decryption, making them incompatible with our
approach.

References
[1] M. Abdalla, M. Bellare, and P. Rogaway. The oracle

Diffie-Hellman assumptions and an analysis of DHIES.
In D. Naccache, editor, CT-RSA 2001, volume 2020 of
LNCS, pages 143–158. Springer, Heidelberg, Apr. 2001.

[2] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters,
J. Staddon, and H.-C. Wong. Secret handshakes from
pairing-based key agreements. In 2003 IEEE Sympo-
sium on Security and Privacy, pages 180–196. IEEE
Computer Society Press, May 2003.

[3] A. Barth, D. Boneh, and B. Waters. Privacy in encrypted
content distribution using private broadcast encryption.
In G. Di Crescenzo and A. Rubin, editors, FC 2006, vol-
ume 4107 of LNCS, pages 52–64. Springer, Heidelberg,
Feb. / Mar. 2006.

[4] M. Bellare, A. Boldyreva, and J. Staddon. Random-
ness re-use in multi-recipient encryption schemeas. In
Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS,
pages 85–99. Springer, Heidelberg, Jan. 2003.

[5] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering, 2(2):77–89, Sept. 2012.

[6] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange.
Elligator: elliptic-curve points indistinguishable from
uniform random strings. In A.-R. Sadeghi, V. D. Gligor,

3360 31st USENIX Security Symposium USENIX Association

and M. Yung, editors, ACM CCS 2013, pages 967–980.
ACM Press, Nov. 2013.

[7] D. R. L. Brown. Generic groups, collision resistance,
and ECDSA. Contributions to IEEE P1363a, Feb.
2002. Updated version for “The Exact Security of
ECDSA.” Available from http://grouper.ieee.org/

groups/1363/.

[8] D. Chaum and E. van Heyst. Group signatures. In D. W.
Davies, editor, EUROCRYPT’91, volume 547 of LNCS,
pages 257–265. Springer, Heidelberg, Apr. 1991.

[9] M. Cooper. Improving Git protocol secu-
rity on GitHub, 2021. https://github.blog/

2021-09-01-improving-git-protocol-security-github/.

[10] B. Cox. Auditing GitHub users’ SSH key qual-
ity. Blog post. https://blog.benjojo.co.uk/post/
auditing-github-users-keys, 2015.

[11] E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik.
Privacy-preserving policy-based information transfer.
In I. Goldberg and M. J. Atallah, editors, PETS 2009,
volume 5672 of LNCS, pages 164–184. Springer, Hei-
delberg, Aug. 2009.

[12] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-
complexity private set intersection protocols secure in
malicious model. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 213–231. Springer, Hei-
delberg, Dec. 2010.

[13] E. De Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In R. Sion,
editor, FC 2010, volume 6052 of LNCS, pages 143–159.
Springer, Heidelberg, Jan. 2010.

[14] J. P. Degabriele, A. Lehmann, K. G. Paterson, N. P.
Smart, and M. Strefler. On the joint security of encryp-
tion and signature in EMV. In O. Dunkelman, editor,
CT-RSA 2012, volume 7178 of LNCS, pages 116–135.
Springer, Heidelberg, Feb. / Mar. 2012.

[15] DMR. GitHub Statistics, User Counts, Facts &
News (2022), 2022. https://expandedramblings.

com/index.php/github-statistics/.

[16] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anony-
mous identification in ad hoc groups. In C. Cachin and
J. Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 609–626. Springer, Heidelberg, May
2004.

[17] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryp-
tography (extended abstract). In 23rd ACM STOC, pages
542–552. ACM Press, May 1991.

[18] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-
knowledge. In 30th ACM STOC, pages 409–418. ACM
Press, May 1998.

[19] C.-I. Fan, L.-Y. Huang, and P.-H. Ho. Anonymous mul-
tireceiver identity-based encryption. IEEE Transactions
on Computers, 59(9):1239–1249, 2010.

[20] M. Fersch, E. Kiltz, and B. Poettering. On the prov-
able security of (EC)DSA signatures. In E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
editors, ACM CCS 2016, pages 1651–1662. ACM Press,
Oct. 2016.

[21] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword search and oblivious pseudorandom functions.
In J. Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 303–324. Springer, Heidelberg, Feb. 2005.

[22] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and
A. Yanai. Oblivious key-value stores and amplification
for private set intersection. In T. Malkin and C. Peikert,
editors, CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 395–425, Virtual Event, Aug. 2021. Springer, Hei-
delberg.

[23] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-
based encryption for fine-grained access control of en-
crypted data. In A. Juels, R. N. Wright, and S. De Capi-
tani di Vimercati, editors, ACM CCS 2006, pages 89–98.
ACM Press, Oct. / Nov. 2006. Available as Cryptology
ePrint Archive Report 2006/309.

[24] S. Jarecki, J. Kim, and G. Tsudik. Beyond secret hand-
shakes: Affiliation-hiding authenticated key exchange.
In T. Malkin, editor, CT-RSA 2008, volume 4964 of
LNCS, pages 352–369. Springer, Heidelberg, Apr. 2008.

[25] S. Jarecki and X. Liu. Unlinkable secret handshakes and
key-private group key management schemes. In J. Katz
and M. Yung, editors, ACNS 07, volume 4521 of LNCS,
pages 270–287. Springer, Heidelberg, June 2007.

[26] S. Jarecki and X. Liu. Private mutual authentication
and conditional oblivious transfer. In S. Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 90–107.
Springer, Heidelberg, Aug. 2009.

[27] K. Kurosawa. Multi-recipient public-key encryption
with shortened ciphertext. In D. Naccache and P. Paillier,
editors, PKC 2002, volume 2274 of LNCS, pages 48–63.
Springer, Heidelberg, Feb. 2002.

[28] B. Libert, K. G. Paterson, and E. A. Quaglia. Anony-
mous broadcast encryption: Adaptive security and ef-
ficient constructions in the standard model. In M. Fis-
chlin, J. Buchmann, and M. Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 206–224. Springer, Hei-
delberg, May 2012.

USENIX Association 31st USENIX Security Symposium 3361

http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/
https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://expandedramblings.com/index.php/github-statistics/
https://expandedramblings.com/index.php/github-statistics/

[29] H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-
based signatures. In A. Kiayias, editor, CT-RSA 2011,
volume 6558 of LNCS, pages 376–392. Springer, Hei-
delberg, Feb. 2011.

[30] M. Manulis, B. Poettering, and G. Tsudik. Taming big
brother ambitions: More privacy for secret handshakes.
In M. J. Atallah and N. J. Hopper, editors, PETS 2010,
volume 6205 of LNCS, pages 149–165. Springer, Hei-
delberg, July 2010.

[31] Mobatek. MobaXterm, 2022. https://mobaxterm.

mobatek.net/.

[32] B. Möller. A public-key encryption scheme with pseudo-
random ciphertexts. In P. Samarati, P. Y. A. Ryan,
D. Gollmann, and R. Molva, editors, ESORICS 2004,
volume 3193 of LNCS, pages 335–351. Springer, Hei-
delberg, Sept. 2004.

[33] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS
#1: RSA Cryptography Specifications Version 2.2. RFC
8017, Nov. 2016.

[34] M. Naor. Deniable ring authentication. In M. Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages
481–498. Springer, Heidelberg, Aug. 2002.

[35] National Vulnerability Database. CVE-2016-20012
detail, 2016. https://nvd.nist.gov/vuln/detail/

CVE-2016-20012.

[36] M. Nemec, D. Klinec, P. Svenda, P. Sekan, and
V. Matyas. Measuring popularity of cryptographic li-
braries in internet-wide scans. In Proceedings of the
33rd Annual Computer Security Applications Confer-
ence, pages 162–175, 2017.

[37] G. Neven, N. Smart, and B. Warinschi. Hash function
requirements for schnorr signatures. Journal of Mathe-
matical Cryptology, 3(1):69–87, 2009. Other identifier:
2001023.

[38] T. Okamoto and D. Pointcheval. The gap-problems: A
new class of problems for the security of cryptographic
schemes. In K. Kim, editor, PKC 2001, volume 1992 of
LNCS, pages 104–118. Springer, Heidelberg, Feb. 2001.

[39] OpenSSH. OpenSSH, 2022. https://www.openssh.

com/.

[40] OpenSSH. OpenSSH-Portable, 2022. https:

//github.com/openssh/openssh-portable/blob/

master/auth2-pubkey.c#L280-L286.

[41] PuTTY. Download PuTTY, 2022. https://www.putty.
org/.

[42] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a
secret. In C. Boyd, editor, ASIACRYPT 2001, volume
2248 of LNCS, pages 552–565. Springer, Heidelberg,
Dec. 2001.

[43] M. Rosulek and N. Trieu. Compact and malicious pri-
vate set intersection for small sets. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 1166–1181,
New York, NY, USA, 2021. Association for Computing
Machinery.

[44] C. Siebenmann. Your SSH keys are a (potential) infor-
mation leak, 2016. https://utcc.utoronto.ca/~cks/
space/blog/tech/SSHKeysAreInfoLeak.

[45] SSH.COM. What is SSH public key authentica-
tion?, 2022. https://www.ssh.com/academy/ssh/

public-key-authentication.

[46] F. Valsorda. SSH whoami.filippo.io. Blog post. https:
//blog.filippo.io/ssh-whoami-filippo-io/,
2015.

[47] F. Valsorda. whoami.filippo.io: an ssh server that knows
who you are. Github repository. https://github.com/
FiloSottile/whoami.filippo.io, 2015.

[48] WonderNetwork. Global Ping Statistics, 2022. https:
//wondernetwork.com/pings.

[49] Y. Zhao and S. S. M. Chow. Are you the one to
share? Secret transfer with access structure. PoPETs,
2017(1):149–169, Jan. 2017.

[50] F.-C. Zhou, M.-Q. Lin, Y. Zhou, and Y.-X. Li. Efficient
anonymous broadcast encryption with adaptive security.
KSII Transactions on Internet and Information Systems
(TIIS), 9(11):4680–4700, 2015.

3362 31st USENIX Security Symposium USENIX Association

https://mobaxterm.mobatek.net/
https://mobaxterm.mobatek.net/
https://nvd.nist.gov/vuln/detail/CVE-2016-20012
https://nvd.nist.gov/vuln/detail/CVE-2016-20012
https://www.openssh.com/
https://www.openssh.com/
https://github.com/openssh/openssh-portable/blob/master/auth2-pubkey.c#L280-L286
https://github.com/openssh/openssh-portable/blob/master/auth2-pubkey.c#L280-L286
https://github.com/openssh/openssh-portable/blob/master/auth2-pubkey.c#L280-L286
https://www.putty.org/
https://www.putty.org/
https://utcc.utoronto.ca/~cks/space/blog/tech/SSHKeysAreInfoLeak
https://utcc.utoronto.ca/~cks/space/blog/tech/SSHKeysAreInfoLeak
https://www.ssh.com/academy/ssh/public-key-authentication
https://www.ssh.com/academy/ssh/public-key-authentication
https://blog.filippo.io/ssh-whoami-filippo-io/
https://blog.filippo.io/ssh-whoami-filippo-io/
https://github.com/FiloSottile/whoami.filippo.io
https://github.com/FiloSottile/whoami.filippo.io
https://wondernetwork.com/pings
https://wondernetwork.com/pings

	Introduction
	Privacy Attacks Against SSH Authentication
	Problem Statement and Goal
	Existing Mitigations and Their Limitations
	Our Contributions
	Other Related Work

	Preliminaries
	Signatures

	Anonymous Multi-KEM
	Joint Security
	Instantiations
	EdDSA
	ECDSA
	RSA
	Mixing Key Flavors

	Security Definition
	Main Protocol
	Security Proof

	PSI variant
	Implementation and Evaluations
	Experimental Setup
	Evaluation Results

	Discussions

