
Practical Privacy-Preserving Authentication for SSH

Lawrence Roy∗ Stanislav Lyakhov∗ Yeongjin Jang∗ Mike Rosulek∗

June 9, 2022

Abstract

Public-key authentication in SSH reveals more information about the participants’ keys than
is necessary. (1) The server can learn a client’s entire set of public keys, even keys generated
for other servers. (2) The server learns exactly which key the client uses to authenticate, and
can further prove this fact to a third party. (3) A client can learn whether the server recognizes
public keys belonging to other users. Each of these problems lead to tangible privacy violations
for SSH users.

In this work we introduce a new public-key authentication method for SSH that reveals
essentially the minimum possible amount of information. With our new method, the server
learns only whether the client knows the private key for some authorized public key. If multiple
keys are authorized, the server does not learn which one the client used. The client cannot
learn whether the server recognizes public keys belonging to other users. Unlike traditional
SSH authentication, our method is fully deniable. Our new method also makes it harder for a
malicious server to intercept first-use SSH connections on a large scale.

Our method supports existing SSH keypairs of all standard flavors — RSA, ECDSA, EdDSA.
It does not require users to generate new key material. As in traditional SSH authentication,
clients and servers can use a mixture of different key flavors in a single authentication session.

We integrated our new authentication method into OpenSSH, and found it to be practical
and scalable. For a typical client and server with at most 10 ECDSA/EdDSA keys each, our
protocol requires 9 kB of communication and 12.4 ms of latency. Even for a client with 20 keys
and server with 100 keys, our protocol requires only 12 kB of communication and 26.7 ms of
latency.

1 Introduction

The Secure Shell (SSH) protocol is used by developers for interacting with remote servers, trans-
mitting files, opening secure tunnels, and updating git repositories. The recommended method for
authentication in SSH is public-key authentication [SSH22]. This authentication method requires
a client to generate keypairs and register the public keys with the server. The server stores, for
each user, a list of authorized keys (e.g., ˜/.ssh/authorized keys).

Figure 1a illustrates how public-key authentication works in SSH. The client may have public
keys for many servers, so the client advertises its public keys, one at a time. These key adver-
tisements continue until the server recognizes a public key contained in the user’s authorized key
list. Finally, the client signs a nonce to prove the ownership of the matching private key, and the
authentication is successful if the server can verify the signature.

∗Oregon State University, {royl,lyakhovs,jangye,rosulekm}@oregonstate.edu. First author supported by a DoE
CSGF Fellowship.

1

1.1 Privacy Attacks Against SSH Authentication

Unfortunately, SSH’s authentication protocol leaks more information than required for authen-
tication. First, a server can learn all of the client’s public keys — even its keys for another
server [Val15a, Val15b, Sie16] — allowing the server to fingerprint clients based on their public
keys. Second, a client can check if a (username,public key) pair is valid for authentication, even
without knowing the corresponding secret key, allowing the client to probe the server for autho-
rized users. This behavior of SSH was known to the developer in 2002, has been reported in
CVE-2016-20012, but not fixed as of May 2022, for 20 years [Nat16].

Third, a server knows which key has been used in authenticating the current session, allowing
the server to track a specific user’s usage based on their keys, and also prove to third parties that
the user authenticated. Fourth, a malicious server can intercept a client’s connection, fooling any
user who does not carefully check the server’s public key fingerprint upon first use. In the following,
we give more detail on each of these attacks

Preliminary: building a key-to-id database. It is possible to build a database that partially
maps SSH public keys to pseudonyms (i.e., usernames on online services). This is because public
services such as Github and Gitlab make all users’ SSH public keys available to the general public.
For example, the SSH keys used by a Github user torvalds can be publicly accessed via https:
//github.com/torvalds.keys. This feature is available for the user’s convenience, e.g., anyone can
easily authorize a user to their SSH server simply by knowing their Github username. Consequently,
it is possible to build a database mapping public keys to pseudonyms by enumerating all usernames
on the service [NKS+17, Cox15].

Attack 1: Client De-anonymization. A malicious server may obtain a list of all available
public keys of the client, then use this list to reveal the client’s identity (pseudonyms on public
services). Figure 1b illustrates how this attack works. Specifically, the server simply declines all
public keys advertised by the client, so that the client eventually offers all of its public keys.1 This
is because the default behavior of the SSH client [Ope22a] is to continue advertising all keys until
authentication succeeds.

Colluding servers can identify common users, and any server can discover the client’s public
pseudonyms by consulting a key-to-pseudonym database built from a corpus of publicly available
keys [Val15a, Val15b, Sie16].

In particular, Cox [Cox15] built a database containing the public keys of all Github users, using
the Github website functionality described above. Later, Valsorda [Val15a] built and publicly
deployed a proof-of-concept de-anonymizing SSH server [Val15b], driven from this database. The
server would decline every public key offered by the client, until the client exhausted its set of
public keys. The server would check the client’s keys against the Github key database and print a
message containing the client’s Github username.

Attack 2: User Probing by the Client. A malicious client can check if a public key is autho-
rized for a username on the server. Such information, in combination with the key-to-pseudonym
database, can be used by the client to probe whether a specific user exists on the server. The
vulnerability has been acknowledged by comments in the OpenSSH source code [Ope22b] since
May of 2002, and assigned CVE-2016-20012, but has not been fixed.

Figure 1c illustrates the attack. In particular, a client may advertise a public key for which it
does not know the secret key. The server gives a different response based on whether that key is
authorized for the give username.

1The default behavior of an OpenSSH server considers a rejected public-key advertisement as an authentication
failure, and limits the number of such failures to 6 per connection. However, the server can be configured with
DEFAULT AUTH FAIL MAX=1000 to ensure that the client can advertise all of its public keys.

2

https://github.com/torvalds.keys
https://github.com/torvalds.keys

(a) Normal Authentication. Client advertises its public keys one by one. When the
server recognizes an authorized key, it requests a signature. Authentication succeeds if
the signature can be verified.

(b) Attack 1: Client De-anonymization. A malicious server rejects all of the client’s
public-key advertisement. This causes the client to advertise all of its public keys, under
the default client behavior. The server can then use a key-to-id database to identify
pseudonyms of the client, e.g., their Github username.

(c) Attack 2: User Probing by Client, CVE-2016-20012. A malicious client obtains a
victim’s username and public-key pair from its key-to-id database. The client guesses or
searches for a likely username, then attempts to authenticate to the server by advertising
this public-key. The server’s response reveals whether that public key is authorized for
that username.

Figure 1: Illustration of SSH public-key authentication and attacks. We have not drawn protocol-message
arrows for server’s rejections of public-key advertisements. Client holds multiple private keys, and the server
holds a list of authorized public keys.

Using this basic attack as a primitive, an attacker can reveal the identity of a known username
on the server by trying public keys from a database. This attack is especially effective against users
who re-use usernames across different services. Additionally, an attacker can often obtain the list
of users if the attacker itself has access to the server. In such a case, the attacker may reveal the
Github usernames of all accounts on the server.

Attack 3: Tracking and Implicating Users via Key-Usage Patterns. The server knows
exactly which public key is used in each successful authentication. A malicious server can use this
information to track the usage of individual users or devices based on their keys. As an example,
a user may have multiple keys registered for the server under a single username, where each key is

3

associated with a different device (e.g., laptop, desktop, work computer). Then a server can track
the usage patterns for specific devices.

Another example is an SSH account shared among an anonymous group. Suppose one would
like to build an anonymous group of open source developers that uses git via SSH as their source
code repository. Anonymity is not possible in this scenario, since the SSH server learns exactly
which key was used for each commit.

Clients authenticate by signing some data under their private key. Signatures are non-repudiable
meaning that a signature is proof that a specific user endorsed a message. The signature produced
in an SSH authentication is thus proof, verifiable by anyone, that a particular user connected to
a server. I.e., a client cannot plausibly deny that it connected to the server. In other online
infrastructure (encrypted messaging, email), deniability is understood as a desirable feature, and
therefore it is natural to ask whether deniabiilty can be extended to SSH authentication.

Attack 4: Intercepting Connections on First Use. This final attack is an attack on
security, not on privacy. Instead of declining every public key offered by the client (as in Attack
1), a malicious server can accept every key. If an attacker redirects a client’s SSH traffic to such a
server, the client will wrongly believe that he/she has connected to a different, desired server. Of
course, SSH clients verify the server’s public key in order to prevent such an attack. However, a
user who follows a trust on first use (TOFU) principle may not carefully check the server’s public
key fingerprint upon the first connection. This leaves the first connection vulnerable to this kind
of attack.

1.2 Problem Statement and Goal

The unifying problem in the first three attacks is that a server or a client may obtain more in-
formation than is needed for authentication, such as unrelated public keys held by the client, the
validity of a username-public-key pair on the server, or the identity of the key (with corresponding
proof) used in a successful authentication.

The SSH community and developers are aware of these problems [Val15a, Val15b, Sie16, Ope22b].
These problems remain because blocking these information leaks requires either maintaining site-
specific configuration (in the case of Attacks 1 & 2), or fundamentally changing the protocol (At-
tacks 3 & 4); see §1.3.

Since SSH has become an important part of the Internet infrastructure, it is worth revisiting
whether its privacy issues can be completely eliminated. There have been significant advances
in cryptographic protocols (specifically, protocols for private set intersection) since SSH was de-
signed. Authentication approaches based on advanced cryptographic techniques — which may have
previously seemed far-fetched and prohibitively expensive — may now be truly practical.

What would be the appropriate way to reimagine SSH authentication to resolve these privacy
problems? A server should grant access to a client iff the client holds a secret key corresponding to
one of the public keys that the server considers authorized. If the authentication mechanism reveals
more information about the participants’ keys than the answer to this question, there is a potential
for violating users’ privacy.

Our work is motivated by the question:

Is it possible for public-key authentication in SSH to reveal only the bare minimum informa-
tion?

Our goal is to design an authentication protocol satisfying the following requirements:

Security. The protocol should not reveal information beyond what is strictly required for an
authentication decision. Without extra information, three of the aforementioned privacy attacks
cannot be carried out. Of course, both clients and servers can learn extra information about each

4

other through other parts of an SSH interaction (e.g., IP address, software version, etc). However,
we believe there is no reason for the public-key authentication mechanism itself to contribute to
privacy violations in SSH, enabling aforementioned attacks.

Drop-In Replacement. Some of the attacks that we consider are inherent to the SSH au-
thentication protocol, and can only be fixed by introducing a new authentication protocol. Given
this fact, our goal is to mimize the required changes to existing deployments and user experience.
Specifically:

1. The protocol should authenticate clients with respect to their existing SSH keys — i.e.,
server/client should not need to change keys or generate new key material to use the new pro-
tocol. Client and server can negotiate whether to use the new or old authentication method.

2. Current SSH authentication works seamlessly even when clients and servers hold keys of many
different flavors (e.g., RSA, (EC)DSA, EdDSA). The new authentication protocol should also
enjoy this property.

3. Clients should be able to benefit from the new protocol without needing to establish and
maintain site-specific configuration.

1.3 Existing Mitigations and Their Limitations

We have introduced 4 motivating attacks on SSH authentication. There are several existing tech-
niques to mitigate some of these attacks, which we briefly discuss below. Some of the attacks can
be fully mitigated, but only at the cost of site-specific configuration — whereas our proposed pro-
tocol addresses all of the privacy problems simultaneously, and “out of the box.” Other attacks are
more fundamental to the existing SSH authentication protocol and cannot be mitigated without
changing the protocol.

Configuration-level fixes. Most SSH clients [Ope22a, PuT22, Mob22] allow users to configure
which public keys are advertised to specific sites; this can indeed mitigate Attack 1. This counter-
measure requires manual server-specific configuration to be in place before a connection, while our
proposed approach completely protects the client’s privacy off-the-shelf. Additionally, OpenSSH
server has a configurable limit on the number of authentication trials, which is 6 by default (any
key advertised by the client counts as an authentication attempt, regardless of whether the server
accepts the advertisement). This configuration cannot nullify the attack because the setup is done
at the server side. In Attack 1, the malicious party is the server, and can freely change their
configuration to launch the attack.

Regarding Attack 2, the SSH protocol allows clients to optionally and pre-emptively provide a
signature alongside a public key advertisement, rather than advertising a key and proving identity
at a later time. In principle, an SSH server could be modified to accept only these kinds of
advertisements, so that a client who doesn’t know the correct secret key cannot learn whether
the server recognizes that key. If both clients and servers employed appropriate configurations
(clients advertising only the “correct” keys to a server and including pre-emptive signatures; servers
requiring pre-emptive signatures), then Attacks 1 & 2 would be effectively mitigated. To the best
of our knowledge, no implementation of SSH provides such a configuration option to the server. In
general, pre-emptive signatures have been discouraged in SSH because it requires computational
effort (signing) for the client which may be considered wasted when the key is not authorized by
the server. Many SSH design decisions were made when RSA and (non-EC) DSA were the only
available signature schemes; both of these schemes have expensive signing algorithms. Modern
signature schemes based on elliptic curves are several orders of magntidue faster.

We note that our proposed protocol also requires the client to expend effort equivalent to signing
under each of its keys. In that sense, our approach would have similar computational cost to the
approach where clients & servers modify their configurations as just described. The advantage

5

of our approach would not be in its computational cost, but in the fact that it does not allow
anything less than this guarantee of privacy, while requiring no special site-specific configuration
for the client, and also addressing the other attacks we consider.

Apart from the impact on Attack 2, if a client provides pre-emptive signatures, the server
obtains non-repudiable proof that a certain user—even a user of a different service, if the client
does not limit its public keys on a per-site basis—has tried to connect. Our proposed approach
improves privacy while also providing deniability.

Regarding Attack 3, no amount of client/server configuration can provide client anonymity or
deniability (hiding from the server which among the authorized keys was used) since the protocol
fundamentally lacks these properties.

As we previously mentioned, clients can prevent Attack 4 by carefully checking the server’s
public key fingerprint upon first use. Existing SSH authentication can provide no fallback protection
to a client who does not verify the server’s identity in this way. Looking ahead, our proposed
protocol does not eliminate Attack 4, but makes it harder for the adversarial server, even if the
client does not verify the server’s key fingerprint.

Joint key management. To counter Attack 3, a group of clients can enjoy anonymity by simply
sharing a single secret key. However, this is not a viable approach when the authorized users do
not know each other’s identities. Revocation of a user from the group is also cumbersome under
this kind of arrangement.

Prior work on anonymous authentication. Many cryptographic primitives promise a com-
bination of anonymity and authentication. Most notably, ring signatures [RST01] and their inter-
active counterpart deniable ring authentication [Nao02] allow a client to prove that it knows the
secret key corresponding to some public key in a given set of authorized keys, without revealing
which key it knows. However, these primitives fundamentally require the client/prover to know the
set of authorized keys, making them a poor fit for SSH authentication.

Other related primitives like group signatures [Cv91] and anonymous ad-hoc authentication [DKNS04]
similarly require the client to know the set of authorized keys. Few methods for “anonymous au-
thentication” also hide the set of authorized keys. One notable exception is a secret handshake
protocol [BDS+03] (see also [JL07, JKT08, JL09, MPT10]), which hides one party’s authentication
policy and hides how the other party satisfied the policy. However, authentication policies for secret
handshake protocols are expressed in terms of credentials issued by a known central authority —
not in terms of user-generated keypairs. Furthermore, these protocols all require specialized key
material, not simple pre-existing SSH keys. The same limitations are both true of authentication
approaches based on attribute-based cryptography [GPSW06, MPR11].

1.4 Our Contributions

Our main result is a practical privacy-preserving public-key authentication method for SSH, with
the following features:

Minimum information. Our method leaks almost the bare minimum information necessary
for authentication. Both parties learn whether the client holds a secret key that corresponds to a
public key that the server considers authorized. In addition:

1. The server learns how many keypairs the client has (but not their flavors; e.g., RSA, ECDSA,
etc.).

2. The client learns how many public keys of each flavor are authorized (and even less information
than this for some flavors).

6

3. The client learns which of its valid keypairs are authorized by the server. I.e., the only way for
a client to know whether the server authorizes a public key is by knowing the corresponding
secret key.

Compatibility with existing SSH keys. Our method supports all SSH key flavors currently
supported by default in OpenSSH: RSA, ECDSA, and EdDSA, which account for 99.7% of SSH
keys in use today [Coo21].2 All parties can use a mixture of key flavors in a single authentication
attempt.

Threat model and other security properties. Our security definition considers an adver-
sary who can steal the secret keys of honest users. After doing so, the adversary can of course
impersonate the user but all past and future authentication attempts by honest users still reveal
only the minimal information described above. This property implies both forward secrecy and
deniability [DDN91, DNS98]. Since the server can simulate its view of the protocol given only the
set of authorized keys, the transcript cannot prove anything to an external party. The protocol is
also secure against adaptive corruptions — i.e., parties can become compromised even during the
execution of the authentication protocol.

The server cannot convince the client of a successful authentication unless the server explicitly
knows one of the client’s public keys. This feature does not completely prevent session interception
(as in Attack 4) against a client who does not carefully check the server’s key fingerprint upon first
use, but it adds a barrier to such an attack. Such an attack can only be targeted to a small number
of clients/keys, and not done on a massive scale.

Finally, we prove security in a model where parties can use the same SSH keys for both tradi-
tional and privacy-preserving authentication.

Implementation and performance. We built a prototype implementation of our authentication
method, as an extension of OpenSSH server/client. Our authentication method is practical and
scalable. For a typical client and server, with at most 10 keys each, our protocol requires 9 kB of
communication and 12.4 ms of latency for ECDSA/EdDSA keys, or 13 kB of communication and
226 ms of latency for RSA-3072 keys. Even for a client with 20 keys and server with 100 keys,
our protocol requires 12 kB of communication and 26.7 ms of latency for ECDSA/EdDSA keys, or
54kB of communication and 300 ms of latency for RSA-3072 keys.

Technical overview. We first introduce a variant of broadcast encryption called anonymous
multi-KEM. A multi-KEM ciphertext is generated by running (c,m1, . . . ,mn)← Enc(pk1, . . . , pkn).
Think of the resulting c as a ciphertext addressed to a collection of public keys pk1, . . . , pkn, where
the owner of pki (who knows the matching ski) can decrypt c to obtain plaintext mi. The multi-
KEM is anonymous if the ciphertext c leaks only the number of recipient public keys, but nothing
about their identities.

In our authentication protocol, the server generates a multi-KEM ciphertext c addressed to the
set of authorized keys. The client holds a set of secret keys and decrypts c under each one to obtain
a set of candidate plaintexts. If one of the client’s keys is authorized, then she and the server will
now hold a common plaintext. To determine whether this is the case, the parties next run a private
set intersection (PSI) protocol on their sets of plaintexts. The goal of PSI is for parties to learn
the intersection of these sets, but nothing else about these sets. We use a variant of PSI in which
the client learns the contents of the intersection — i.e., the client learns which of its keypairs was
authorized — while the server learns only whether the intersection was nonempty.

We show how to construct a single anonymous multi-KEM scheme that simultaneously supports
all standard SSH key flavors: RSA, (EC)DSA, and EdDSA. We also show how to modify the leading

2The other 0.3% of keys are (non-EC) DSA, which our methods can easily support, but which is now deprecated
in OpenSSH.

7

PSI protocol of Rosulek & Trieu [RT21] to allow the server to learn (only) whether the intersection
is nonempty.

1.5 Other Related Work

PSI Variants. Our protocol is a kind of private set intersection (PSI) where the client cannot
include pk in its set without also knowing the corresponding sk. A closely related PSI variant
is authorized PSI (APSI) [DJKT09, DKT10, DT10], where the client cannot include m in its set
without also knowing a signature on m from a certificate authority.

In APSI, the protocol implicitly verifies signatures on the client’s items, but all of these sig-
natures are with respect to a single verification key (belonging to the certificate authority) that
all parties know. In the case of RSA signatures, the APSI protocol can take advantage of the
algebraic structure of the certificate authority’s RSA modulus. Our setting is quite different, since
the protocol must authenticate potentially many RSA keys held by the client, each with different
moduli that the server doesn’t even know, since they are part of the client’s private input.

In our protocol, the client proves a non-empty intersection by using a PSI where each item has
an associated payload. Posession of this payload serves as proof of the non-empty intersection. The
idea of associating PSI items with payloads is common (e.g., [FIPR05, DT10]) and has even been
used previously as a means of authentication [ZC17]. Our specific combination of MKEM and PSI
to authenticate with respect to a set of public keys is novel, to the best of our knowledge.

Multi-Encryption and Broadcast Encryption. In broadcast encryption, a sender addresses
a single ciphertext to an ad-hoc group of public keys. Broadcast encryption was first studied in
[Kur02, BBS03], where it was observed that there exist techniques that are more efficient than
simply encrypting separately to each receiver. Much of subsequent work on broadcast encryption
involves other features (e.g., revocation, traitor-tracing) that are orthogonal to our needs.

We use a simple variant of broadcast encryption that we call multi-KEM. Multi-KEMs appear
implicitly in most constructions of broadcast encryption, but as a high-level technique and not a
well-defined primitive. We require the multi-KEM to be anonymous [LPQ12] (sometimes called
key-private [BBW06]), meaning that the ciphertext hides the set of recipients. We require a weaker
confidentiality property (infeasibility of total plaintext recovery) than is standard for broadcast
encryption, leading to simpler constructions.

One important technique we use in our multi-KEM construction is encoding RSA ciphertexts as
outputs of a polynomial; this technique was used previously in constructions of broadcast encryption
in [FHH10, ZLZL15].

2 Preliminaries

Definition 1. Let G generate a cyclic group G of order ℓ. The gap computational Diffie–
Hellman (GapCDH) assumption [OP01] for G states that it is computationally hard to find Gab

from Ga and Gb, even with an oracle for solving the decisional Diffie–Hellman problem. More
precisely, every PPT adversary A has negligible probability to win the game:

a, b← [0, ℓ) ∩ Z
guess(X ∈ G, Y ∈ G, Z ∈ G):

return dlogG(X) · dlogG(Y)
?
= dlogG(Z) mod ℓ

win if Aguess(·)(Ga, Gb) = Gab

8

2.1 Signatures

Definition 2. A signature scheme is a collection SS of PPT algorithms

(pk, sk)← SS.Gen(opts)

s← SS.Sign(sk,m)

v := SS.Verify(pk,m, s)

for opts ∈ SS.OPTS, pk, sk,m, s ∈ {0, 1}∗, and v ∈ {0, 1}, satisfying correctness: when these
algorithms are executed as above, v = 1 except with negligible probability.

Definition 3. A signature scheme SS satisfies existential unforgeability under chosen mes-
sage attacks (EUF-CMA) if for all opts ∈ SS.OPTS, every PPT adversary A has negligible
probability of winning the game:

M := {}
(pk∗, sk∗)← SS.Gen(opts)

sign(m):

M := M ∪ {m}
return SS.Sign(sk∗,m)

(m, s)← Asign(·)(pk∗)
win if m /∈M ∧ SS.Verify(pk∗,m, s)

3 Anonymous Multi-KEM

In this section we introduce our encryption abstraction, called a multi-KEM. Multi-KEM allows a
sender to generate a ciphertext c addressed to a set of public keys. Each corresponding secret key
may decrypt c to a different value. The sender does not need to choose these values, but she learns
them when encrypting, as in a typical KEM.

Definition 4. A multi-KEM (MKEM) is a collection MKEM of PPT algorithms

(pk, sk)← MKEM.Gen(opts)

(c, r)← MKEM.Enc({pk1, . . . , pkn})
m := MKEM.Msg(pk, r)

m′ := MKEM.Dec(sk, c)

for opts ∈ MKEM.OPTS and pk, sk, c, r,m,m′ ∈ {0, 1}∗, satisfying correctness: no adversary can
pick public keys to make decryption fail for an honestly generated key. I.e., for all opts ∈ MKEM.OPTS,
every PPT A has negligible probability of winning the game:

(pk, sk)← MKEM.Gen(opts)
PK← A(pk)
(c, r)← MKEM.Enc({pk} ∪ PK)
win if MKEM.Msg(pk, r) ̸= MKEM.Dec(sk, c)

Note that instead of having Enc output the set of plaintext values, we have Enc output some
state r, which the sender can further use to determine one receiver’s output via Msg(pk, r). This
choice of syntax simplifies some parts of our protocol.

9

We require a relatively mild security definition for a MKEM. In our eventual protocol, MKEM
plaintexts are used only as inputs to a private set intersection (PSI) protocol. The PSI protocol
exposes to the adversary an oracle for verifying guesses of MKEM plaintexts — i.e., the adversary
learns no more than whether one of its PSI inputs (guesses) is equal to one of the honest party’s
MKEM plaintexts. Hence, our security definition requires that total plaintext recovery is infeasi-
ble, even in the presence of oracles for verifying guesses of plaintexts (from either MKEM.Dec or
MKEM.Msg). We call this security notion weak chosen ciphertext attack (wCCA) security.

Definition 5. A multi-KEM MKEM is secure against weak chosen ciphertext attacks (wCCA)
if for all opts ∈ MKEM.OPTS, every PPT adversary A has negligible probability of winning the game:

R := empty
(pk∗, sk∗)← MKEM.Gen(opts)

encrypt(PK):

(c, r)← MKEM.Enc({pk∗} ∪ PK)
R[c] := r
return c

guess dec(c,m):

return MKEM.Dec(sk∗, c)
?
= m

guess msg(c, pk,m):

if R[c] defined:

return MKEM.Msg(pk, R[c])
?
= m

(c,m)← Aencrypt,guess dec,guess msg(pk∗)

win if R[c] defined ∧MKEM.Dec(sk∗, c) = m

Note that adversarially chosen public keys can be input to guess msg. This models an attack
scenario for the eventual protocol, where the adversary may create a public key related to an honest
user’s key, rather than generating them honestly. Such related public keys may have related MKEM
plaintexts. However, including guess msg in this game guarantees that that checking guesses of
these related plaintexts will not be useful for attacking the protocol.

We additionally require that MKEM ciphertexts leak a minimal amount about the set of recipi-
ent keys. The nature of the leakage varies by scheme, so we let the leakage function be a parameter
of an MKEM scheme. The leakage function parameterizes what a MKEM ciphertext reveals about
the honestly-generated recipient keys, while we assume that the ciphertext can leak arbitrary in-
formation about adversarially chosen keys. The bound on leakage holds even to adversaries who
know the secret keys of all honestly generated keypairs, and learn the sender’s state value r:

Definition 6. MKEM is anonymous except for leakage MKEM.Leak if there is a PPT simulator
(AnonSim,AnonView) such that the following oracles are indistinguishable.

10

PK∗ := {}
generate(opts):

(pk, sk)← MKEM.Gen(opts)
PK∗ := PK∗ ∪ {pk}
return (pk, sk)

encrypt(PK):

(c, r)← MKEM.Enc(PK)
for pk ∈ PK \ PK∗:
M [pk] := MKEM.Dec(r, pk)

return (c, r,M)

PK∗ := {}
SK := empty

generate(opts):

(pk, sk)← MKEM.Gen(opts)
PK∗ := PK∗ ∪ {pk}
SK[pk] = sk
return (pk, sk)

encrypt(PK):

L := MKEM.Leak(PK)
(c,M, v)← AnonSim(L,PK \ PK∗)
S := {SK[pk] | pk ∈ PK ∩ PK∗}
r ← AnonView(v, S)
return (c, r,M)

3.1 Joint Security

Existing SSH keypairs are essentially signing keys, but our new authentication method requires us
to treat them as MKEM keys. In order for the existing uses of these SSH keys to remain valid, we
must consider joint security of an MKEM and signature scheme using the same keypair.

Definition 7. MKEM is a jointly secure multi-KEM and signature scheme (MKEMSS)
if it satisfies both correctness definitions (with the same Gen), and is both EUF-CMA and wCCA
secure when the adversary is given the oracles from both of those games simultaneously. Formally,
every PPT adversary has negligible chance of winning the game:

R,M := {}
(pk∗, sk∗)← MKEM.Gen(opts)

// encrypt, guess dec, guess msg as in Definition 5

// sign as in Definition 3

(c,m, σ)← Aencrypt,guess dec,guess msg,sign(pk∗)

win if [R[c] defined ∧MKEM.Dec(sk∗, c) = m]

∨ [m /∈M ∧MKEM.Verify(pk∗,m, σ)]

3.2 Instantiations

We describe MKEMSS constructions for the standard SSH key flavors: EdDSA, (EC)DSA, and
RSA.

3.2.1 EdDSA

EdDSA [BDL+12] is a particular way of instantiating Schnorr signatures over twisted Edwards
curves such as Ed25519. Let G be a point on elliptic curve E that generates a subgroup G of
prime order ℓ. Let f be the cofactor of the curve, and let M ⊆ fZ the set of exponents (to clear
cofactors).

The nonce r is chosen deterministically in EdDSA by evaluating a PRF, F : {0, 1}2λ×{0, 1}∗ →
Z/ℓZ. The PRF key h is part of the private key.3 The Schnorr challenge comes from a random
oracle H : E × E × {0, 1}∗ → Z/ℓZ.

3Implementations compress the two parts of the private key using a PRG.

11

EdDSA.Gen():

a←M
h← {0, 1}2λ
return (Ga, (a, h))

EdDSA.Verify(A,m, (R, s)):

return Gs ?
= R+AH(R,A,m)

EdDSA.Sign((a, h),m):

r := F(h,m)
R := Gr

s := (r +H(R,A,m)a) mod ℓ
return (R, s)

The corresponding multi-KEM is based on elliptic curve Diffie–Hellman, reusing a single ECDH
message for all public keys. Since Enc does not depend on the public keys at all, it trivially satisfies
the anonymity definition with no leakage.

EdDSA.Enc(PK):

r ←M
return (Gr, r)

EdDSA.Msg(pk, r):

return pkr

EdDSA.Dec((a, h), C):

return Ca

In Section A.1 we prove the joint security of EdDSA under the GapCDH assumption, using a
variant of the well-known proof for Schnorr signatures. A similar proof of joint security for Schnorr
and Diffie–Hellman was given in [DLP+12].

Lemma 8. Any attack A against the joint security of the MKEMSS EdDSA implies an attack A′

against the GapCDH problem. A′ takes approximately twice the computation of A, and

Adv[A] ≤

√
qH

(
Adv[A′]

P 2
+

1

ℓ

)
+

qHqS
ℓ

,

where A makes qH queries to the random oracle H and requests qS signatures.

The slack in the concrete security bound is common to security proofs for Schnorr signatures
based on the forking-lemma, and can typically be improved by an analysis in the stronger generic
group model (GGM) [NSW09].

3.2.2 ECDSA

ECDSA is another signature scheme based on ECC, and hence our multi-KEM for ECDH is essen-
tially the same as the one for EdDSA. Let E, G, and ℓ be the same as above.

ECDSA.Gen():

a← [1, ℓ) ∩ Z
return (Ga, a)

ECDSA.Enc(PK):

r ← [1, ℓ) ∩ Z
return (Gr, r)

ECDSA.Msg(A, r):

return Ar

ECDSA.Dec(a,C):

return Ca

ECDSA.Sign(a,m):

k ← [1, ℓ) ∩ Z
r := (Gk)x mod ℓ

s := H(m)+ra
k mod ℓ

return (r, s)

ECDSA.Verify(A,m, (r, s)):

if 0 ≡ rs mod ℓ:
return 0

return r
?
=
(
G

H(m)
s A

r
s

)
x

Unfortunately, all known proofs of ECDSA’s security depend on highly idealized assumptions.
Specifically, the conversion operation (R)x that gets the x-coordinate of a curve point has to be

12

idealized [FKP16]. Brown [Bro02] proved security in the Generic Group Model (GGM); a generic
group does not have meaningful x-coordinates, so this implicitly turns (R)x into a random oracle.
Later, Fersch et al. [FKP16] proved security using only an idealized model for (R)x, without the
GGM.

A similar joint encryption and signature scheme was proven in the GGM [DLP+12]. We adapt
their result to our scheme (proof in Section A.2):

Lemma 9. If H is collision resistant and zero-finder-resistant, then ECDSA is a jointly secure
MKEMSS in the GGM.

3.2.3 RSA

There are several methods for sampling RSA keypairs, and we let the opts argument to Gen specify
the method of choice. SSH keypairs use RSASSA-PKCS1-v1 5 signatures [MKJR16], outlined
below. To encode the message to be signed, it uses a padding scheme, PKCSN : {0, 1}∗ → Z/NZ,
the details of which are unimportant for our purpose.

RSA.Sign((N, e, d),m):

return PKCSN (m)d
RSA.Verify((N, e),m, s):

return se
?
= PKCSN (m)

It is trivial to construct a KEM for a single recipient by simply using bare RSA as a trap-
door function. Padding is both undesirable for anonymity, and unnecessary since the plaintext is
uniformly random in Z/NZ.

RSA.Enc1((N, e)):

r ← Z/NZ
return (re mod N, r)

RSA.Dec1((N, e, d), c):

return cd mod N

Constructing an anonymous multi-KEM is non-trivial. Unlike the Diffie–Hellman approach
which works for ECC keys, RSA encryptions depend on the public key, so a multi-KEM must
generate separate ciphertexts for each recipient. This creates two problems for anonymity: an
individual RSA ciphertext leaks some information about its public key N , since it is a number
in [0, N), and RSA.Dec must somehow be told which ciphertext to decrypt for which keypair. We
solve the first problem by encoding the ciphertext into an (approximately) uniformly random integer
c′ ∈ [0, 22λ s(N)), by adding some padding p′, which is a random multiple of N below 22λ s(N). Here,

s(N) =
⌈
ℓ(N)+λ

2λ

⌉
is chosen to lengthen c′ enough to be almost uniform, while padding it to be a

multiple of 2λ bits long, and ℓ(N) is the size of the public key N , so 2ℓ(N)−1 < N < 2ℓ(N).
To handle the second problem, we encode the public-key-to-ciphertext mapping in a polynomial.

Essentially, the sender generates a polynomial C such that C(pk) = c′ for each key pk and associated
ciphertext c′. The coefficients of the polynomial leak nothing about the pk’s if the c′ values are
jointly pseudorandom. However, this would require a very large field since RSA keys and ciphertexts
are rather large. Instead, our Multi-KEM sender divides c′ into chunks c0, . . . , cs(N)−1, each of size
2λ bits. She then encodes a polynomial C(x) such that C(H(pk, i)) = ci for each chunk ci, where
H is a collision-resistant hash. Dec then evaluates this polynomial at H(pk, i) for each i, combines
the chunks into a ciphertext c′, and then decrypts it. We set the chunk size to 2λ bits because H
needs to be a collision resistant hash. The result is polynomial operations in a field F of order very
close to 22λ.

Interpolation of a degree-n polynomial requires Θ(n log2 n) field operations. Instead of a poly-
nomial, it is possible to use any oblivious key-value store (OKVS) [GPR+21], a generalization of
polynomials. There exist more asymptotically efficient OKVS constructions, but we found simple
polynomial interpolation to be sufficiently fast for the small set sizes in our setting.

13

RSA.Enc(PK):

S := {}
R := empty map
for (N, e) ∈ PK:
c, r ← RSA.Enc1((N, e))
R[(N, e)] := r
c0, . . . , cs(N)−1 ← ChkN (c)

for i := 0 to s(N)− 1:
S := S ∪ {(H(N, e, i), ci)}

return interpolF(S), R

ChkN (c):

p← [0, 22λ s(N)) ∩ Z
p′ := p− (p mod N)
c′ := p′ + c
for i := 0 to s(N)− 1:
ci := c′ mod 22λ

c′ :=
⌊
c′/22λ

⌋
return c0, . . . , cs(N)−1

RSA.Msg(pk, R):

return R[pk]

RSA.Dec(sk, C):

N, e, d := sk
for i := 0 to s(N)− 1:

ci := C(H(N, e, i))
c := UnchkN ({ci}i)
m := RSA.Dec1(sk, c)
return m

UnchkN (c0, . . . , cs(N)−1):

c :=

s(N)−1∑
i=0

22λici

return c mod N

PKCS signatures lack a security reduction to the RSA assumption, so we cannot prove the joint
security of RSA based on (·)e mod N being one-way. However, we can do the next best thing: prove
joint security under the assumption that the signature scheme is secure.

Lemma 10. The EUF-CMA security of the RSA signature scheme implies that RSA is a jointly
secure MKEMSS.

Recall that joint security requires that the scheme satisfy weak-CCA security (Definition 5). In
particular, it should be hard to guess the decapsulation of a KEM ciphertext, even given an oracle
for checking such guesses. In the case of RSA, the adversary already has the ability to test whether
a guess is correct: To test whether m = cd = RSA.Dec1((N, e, d), c) for some guess m, the adversary
can simply test whether me = c, using only public information. This algebraic property of RSA
renders the guess dec and guess msg oracles redundant, and greatly simplifies the security proof
compared to the Diffie-Hellman-based MKEMs. The proof details are defered to the full version.

Finally, we need to show anonymity with respect to a leakage function. For properly generated
public keys, ChkN will produce uniformly random chunks, so C will be a uniformly random poly-
nomial with degree less than s(PK), where s(PK) is the sum of s(N) for all the public keys in PK.
That is, only the combined length of all public keys needs to be leaked.4

Lemma 11. RSA is an anonymous MKEM with respect to leakage RSA.Leak(PK) = s(PK).

Both proofs for the RSA MKEM are given in in Section A.3.

3.2.4 Mixing Key Flavors

SSH allows users to authenticate themselves with many different keypair flavors. To achieve the
same property, our authentication protocol requires a single multi-KEM where encryptions can be

4Adversarial public keys can be malformed so that RSA.Enc1 does not generate a uniformly random element of
Z/NZ, e.g. by picking an e that is not coprime to λ(N). Recall that MKEM ciphertexts need not hide anything
about adversarially generated keys.

14

addressed to a mixture of different key flavors. We build such a multi-flavor MKEM by simply
concatenating a separate MKEM ciphertext for each key flavor.

The mixed-flavor multi-KEM (which we call MixKEM) is parameterized by a set FLAVORS of
supported key flavors. The key generation of MixKEM expects a particular flavor as one of its
options, and keys in the MixKEM scheme are of the form (f, pk) where pk is a key of flavor f.

MixKEM.OPTS =

{
(f, opts)

∣∣∣∣ f ∈ FLAVORS,
opts ∈ f.OPTS

}
MixKEM.Gen((f, opts)):

(pk, sk)← f.Gen(opts)
return (f, pk), (f, sk)

MixKEM.Sign((f, sk),m):

return f.Sign(sk,m)

MixKEM.Verify((f, pk),m, s):

return f.Verify(pk,m, s)

MixKEM.Dec((f, sk), C):

if C[f] undefined:
return ⊥

return f.Dec(sk, C[f])

MixKEM.Enc(PK):

F := {f | (f, pk) ∈ PK}
C,R := empty map
for f ∈ F :
PKf := {pk | (f, pk) ∈ PK}
c, r ← f.Enc(PKf)
C[f] := c
R[f] := r

return C,R

MixKEM.Msg((f, pk), R):

return f.Msg(pk, R[f])

Regarding anonymity, we must characterize what information MixKEM.Enc(PK) leaks about
the public keys in PK. Let F and PKf be defined as in MixKEM.Enc. Clearly, MixKEM.Enc(PK)
leaks F (the set of flavors present), and it also leaks any information from each flavor’s f.Enc(PKf).
Therefore, the leakage function for MixKEM is MixKEM.Leak(PK) = {(f, f.Leak(PKf)) | f ∈ F}.

In Section A.4 we prove the following:

Lemma 12. MixKEM is a jointly secure MKEMSS if every flavor in FLAVORS is.

Lemma 13. MixKEM is anonymous, assuming that every f ∈ FLAVORS is, with advantage is
bounded by the total advantage against all the individual flavors’ anonymities.

MixKEM is subject to some tradeoffs between efficiency and leakage. For example, MixKEM.Enc
could be made to always generate ciphertexts for some set of commonly used flavors, thereby not
leaking whether they are present in PK. Key flavors beyond RSA (including EdDSA and ECDSA)
could be encoded into a single polynomial,5 which would leak no more than the total size of all
ciphertexts. Our choice of MixKEM was motivated largely by simplicity. Finally, note that ECDSA
keys can be instantiated over a variety of different curves, and each curve correpsonds to a different
MKEM flavor.

4 Security Definition

We present our formal security definition in the form of an ideal functionality in the UC frame-
work, in Figure 2. The functionality is somewhat complicated and subtle, so we provide intuitive
explanations of its main features below.

Keys. The functionality’s genkey command generates and logs a keypair to model the local
process of key generation by honest parties. We consider an adversary who is capable of stealing
honest users’ secret keys; this is modeled by the functionality’s stealkeys command.

5Encoding into a polynomial requires the ciphertexts to be pseudorandom bit strings. This could be achieved for
EC-based schemes, e.g., with the Elligator [BHKL13] technique.

15

Parameters:
• Parties P1, P2, . . .
• A signature scheme SS = (Gen,Sign,Verify).
• Function L characterizing leakage on server’s set.

Static variables:
• Sets Σ and Secure; associative arrays SK1, SK2, . . .

Define predicate:

can use(Pi, pk) =

{
SKi[pk] defined, Pi honest

pk ̸∈ Secure, Pi corrupt

On input (genkey, opts) from party Pi:
1. Do (sk, pk)← Gen(opts) and set SKi[pk] := sk.
2. If Pi is honest: add pk to Secure.
3. Give pk to Pi.

On input (get sk, pk) from the adversary:
4. If SKi[pk] is defined for some i, then give that SKi[pk] to the adversary.

// simulator can send this command only when the real-world
// adversary compromises Pi’s storage

On input (stealkeys, Pi) from the adversary:
5. Set Secure := Secure \ {pk | SKi[pk] defined}.
6. Give SKi to the adversary.

On input (sign, pk,m) from Pi:
7. If ¬can use(Pi, pk): abort.
8. Add (pk,m) to Σ.
9. Give Sign(SKi[pk],m) to Pi.

On input (verify, pk,m, σ) from any party:
10. If pk ∈ Secure and (pk,m) ̸∈ Σ: respond false.
11. Otherwise respond with Verify(pk,m, σ).

// authentication attempt between server PS & client PC

On input (auth1, (PS, PC, ssid),KS) from PS:
12. If PC is corrupt, give leakage to the adversary:(

L(KS), {pk ∈ KS | ∀i : SKi[pk] undefined}
)
.

13. Wait for command (auth2, (PS, PC, ssid),KC) from PC.
14. Give |KC| to PS.
15. Wait for command (auth3, (PS, PC, ssid),K

′
S) from PS.

16. If PS is corrupt: set KS := K ′
S (otherwise ignore K ′

S).
17. Compute A := KS ∩KC ∩ {pk | can use(PC, pk)}.
18. Give (A, |KS|) to PC.
19. Wait for command (deliver, ssid, d ∈ {0, 1}) from PC.
20. Give d ∧ [A ̸= ∅] to PS.

Figure 2: Ideal functionality Fnew-auth defining the security of our new public-key authentication method.

16

Keys can be classified into 3 categories with respect to the ideal functionality: (1) A key
generated by an honest user is initially considered secure and stored in the set Secure (line 2). (2)
A secure key becomes stolen when the adversary calls the stealkeys command on the owner of that
key. (3) Parties can invoke the functionality’s commands on keys that were not generated by honest
parties. We call such keys as unregistered, and they are treated as adversarially generated.

The functionality uses a predicate can use to decide whether a user is allowed to use a key for
authentication or signing.

• Honest users can only use keys that they generated honestly, regardless of whether they are
secure or stolen.

• Corrupt users can only use stolen or unregistered keys, but not secure keys.

In our security proof, we restrict our focus to simulators that call stealkeys only when the
real-world adversary compromises a party’s actual key storage. Hence stealkeys in the ideal world
captures key compromise in the real-world, and stealkeys is the only way for an adversary to gain
an advantage in the real world, with respect to the can use predicate. In the ideal world, knowledge
of the sk values offers no advantage to an adversary. We therefore allow the ideal-world simulator
to learn these sk values (via the get sk command), which is helpful in our security proof. Again,
we emphasize that giving all sk values to the ideal-world adversary does not help that adversary
authenticate or forge signatures under more keys, if they don’t also send a stealkeys command.

Authentication. A server PS and client PC can perform an authentication session using a
sequence of auth commands. Each party provides a set of public keys: KS,KC respectively. The
client learns the intersection A = KS∩KC (line 17-18). If the client is corrupt, then it learns further
leakage on the server’s set KS, as well as the unregistered keys in KS (line 12). Leaking the set
of unregistered keys is necessary for our security proof, but it does no harm to honest users since
their keys are always registered. The server learns only |KC| (line 14) and whether the intersection
A is nonempty (line 20).

We say that the client “successfully authenticates” under a key if that key is in the set A. A
client can only authenticate under keys for which it satisfies the can use (line 17).

If the intersection is nonempty, the client can make the server think that the intersection is
empty (line 19-20, d = 0) — this relaxation of correctness is needed to model our eventual protocol.
However, lying in this way is not beneficial for the client with respect to authentication. The client
can never make an empty intersection seem nonempty.

Signing. We model a setting where users can use the same keypairs both for our new authen-
tication protocol and for traditional authentication as well. Since traditional authentication uses
a simple challenge-response protocol and uses keypairs for signing, it suffices for our functionality
to provide a way for parties to sign and to verify signatures with their keypairs (sign and verify
commands). Honest parties will always use the functionality to sign and verify.

If a key is secure with respect to the functionality, then the functionality’s verify command will
reject signatures on messages that weren’t originally generated by the key’s owner (lines 8,10).6 In
short, if a client PC honestly generates its keypair, and an adversary has not stolen its secret key,
then PC is the only party that generate signatures (on new messages) that verify properly.

The functionality does not provide any particular unforgeability guarantee for stolen or unreg-
istered keys. Instead, it simply runs the signature scheme’s Verify algorithm, so that the real and
ideal worlds match (line 11).

6If the key owner generates a signature σ on m, then the functionality does not rule out the possibility of an
adversary generating a different signature σ on the same m. This corresponds to weak unforgeability, and such a
relaxation is necessary because ECDSA is only weakly unforgeable.

17

Key agreement. In our envisioned application within SSH, client and server first perform key
agreement and then authenticate each other. Hence, our authentication protocol can safely assume
that a secure point-to-point channel already exists between client and server. Our protocol can
be executed within this secure channel.7 This means that our ideal functionality does not need to
deal with the complexities of defining key agreement — i.e., giving a common random key to both
parties iff the client is authorized — it merely needs to give the server the answer to whether the
client is authorized.

Other properties. Invoking stealkeys does not allow the adversary to learn whether the newly-
stolen keys were used in any past authentication attempts, by either the client or server. In other
words, our protocol is fully deniable for both parties.

Another interesting property is that a server cannot convince the client that authentication has
succeeded, unless the server explicitly knows (and commits to) one of the client’s public keys. This
property makes it harder (though not impossible) for a corrupt server to intercept SSH connections
intended for another server, as in Attack 4 that we describe in Section 1. Such an attacker would
need to target specific users/keys, and would not be able to easily intercept connections on a much
larger scale.

5 Main Protocol

Our authentication protocol follows the high-level outline presented in Section 1.4. Namely, the
server encrypts a multi-KEM ciphertext to the set of authorized public keys. The client decrypts
this ciphertext under each of its secret keys. Finally, the parties perform a private set intersection
(PSI), using the plaintexts that they obtained from the multi-KEM. The resulting intersection is
non-empty if and only if the client holds an authorized secret key.

We require a flavor of PSI in which the client learns the contents of the intersection, and the
server can learn whether the intersection was non-empty. However, it does no harm if the client can
choose whether to prove that the intersection was non-empty — choosing not to do so only prevents
authentication from succeeding. Later in Section 6 we describe how to construct an efficient PSI
protocol with this feature. In Figure 3 we formally define the security of this PSI variant, as an
ideal functionality in the UC framework.

The formal details of our authentication protocol are given in Figure 4. For technical reasons,
the parties perform the PSI on a set of ⟨pk,m⟩ pairs rather than plaintext values alone.

5.1 Security Proof

Theorem 14. The protocol in Figure 4 is a UC-secure protocol realizing ideal functionality Fnew-auth

(Figure 2) against adaptive adversaries, assuming that MKEM is anonymous (Definition 6) and a
jointly secure multi-KEM and signature scheme (Definition 7).

Proof. We sketch a proof here and defer the full details to Appendix B. There are two important
cases for the simulator, depending on who is corrupted when the auth session starts.

Case of honest server, corrupt client: In this case, the simulator obtains leakage on the
honest server’s set of public keys, as well as all its unregistered public keys. It generates a dummy
ciphertext c by calling MKEM.AnonSim on that leakage. AnonSim is from the MKEM anonymity
definition, which we use to show that these dummy ciphertexts are indistinguishable from the real
ones. If an honest server is corrupted adaptively during an auth session, then the simulator must
provide a dummy internal state for the server. In this case the server’s state consists of the r-value
from the ciphertext. The simulator generates an r-value using the AnonView algorithm from the
anonymity definition.

7We assume that parties will incorporate a transcript of the key agreement session as part of their session id ssid
to further bind our authentication protocol to their secure channel.

18

Behavior:
1. Await command (input, (PS, PC, ssid),MC) from PC.
2. Give |MC| to PS.
3. Await command (input, (PS, PC, ssid),MS) from PS.
4. Compute I = MS ∩MC and give (I, |MS|) to PC.
5. Await command (deliver, ssid, d ∈ {0, 1}) from PC.
6. Give d ∧ [I ̸= ∅] to PS.

Figure 3: Ideal functionality Fpsi+ for PSI-with-emptiness.

On command (genkey, opts) to party Pi:
1. Pi: Run (sk, pk)← Gen(opts) and set SKi[pk] := sk.

// adversary learns SKi when it compromises Pi’s storage.

2. Pi: Output pk.

On command (sign, pk,m) to party Pi:
3. Pi: If SKi[pk] not defined: abort.
4. Pi: Run Sign(SKi[pk],m) and return the result.

On command (verify, pk,m, σ) to party Pi:
5. Pi: Run Verify(pk,m, σ) and return the result.

On command (auth1, (PS, PC, ssid),KS) to party PS:
6. PS: Generate (c, r)← Enc(KS) and send c to PC.
7. PC: Await command (auth2, (PS, PC, ssid),KC) and set:

MC :=

{〈
pk,Dec(SKC[pk], c)

〉 ∣∣∣∣ pk ∈ KC and
SKC[pk] defined

}
.

8. PC: Send (input, (PS, PC, ssid),MC) to Fpsi+.
9. PS: Receive |MC| from Fpsi+ and output it.

10. PS: Await command (auth3, (PS, PC, ssid),−) and set:

MS :=
{〈

pk,Msg(r, pk)
〉 ∣∣∣ pk ∈ KS

}
.

11. PS: Send (input, (PS, PC, ssid),MS) to Fpsi+.
12. PC: Receive output (I, |MS|) from Fpsi+ and output:(

{pk | ∃m : ⟨pk,m⟩ ∈ I}, |MS|
)

13. PC: Await command (deliver, ssid, d) and forward it to Fpsi+.
14. PS: Receive output e from Fpsi+ and output it.

Figure 4: Our anonymous authentication protocol.

19

Later, the corrupt client will provide a set of ⟨pk,m⟩ pairs as input to Fpsi+. The simulator’s
main task is to check which of these ⟨pk,m⟩ pairs is “correct” — i.e., whether m is the correct
decryption of c with respect to key pk. The set of pk’s having correct decryption values is what the
simulator sends to Fnew-auth as the corrupt client’s extracted input.

The simulator checks the correctness of a ⟨pk,m⟩ pair in different ways depending on the status
of pk:

• If pk is registered, the simulator calls get sk to learn the corresponding sk, and computes the
correct m as Dec(sk, c).

• If pk is unregistered, then MKEM.AnonSim already provided the correct decryption value when
generating the dummy ciphertext.

When a key pk is in Secure, this models a key registered to an honest party, whose secret key
has not yet been stolen by the real-world adversary. We further use the joint MKEMSS security
of MKEM to argue that the adversary cannot predict a “correct” decryption with respect to such
a secure pk, and neither can it generate a signature forgery under such a key. Without knowing
correct decryptions under pk, the corrupt client cannot authenticat under pk.

Case of corrupt server, honest client: In this case there is no protocol message from
the client to simulate in an auth interaction, and no persistent state held by the honest client to
simulate in the event of an adaptive corruption. The only job of the simulator is to extract the
corrupt server’s input (a set of keys) to send to the Fnew-auth functionality. The simulator observes
the server’s protocol message c and then later observes the server’s PSI input, a set of ⟨pk,m⟩ pairs.
As before, the main task of the simulator is to determine which of these pairs is “correct.”

• If pk is registered by the functionality (secure or stolen), then it was honestly generated. The
simulator can learn the corresponding sk (via get sk) and obtain the correct m as Dec(sk, c).

• If pk is not registered by the functionality, then an honest client will not attempt to authen-
ticate under it. So the simulator can safely ignore these keys.

The keys from the server’s PSI input that are associated with correct decryption values comprise
the Fnew-auth input extracted by the simulator.

6 PSI variant

Our authentication protocol requires a variant of PSI in which the client learns the contents of
the intersection, and then the client can (optionally) prove to the server that the intersection was
non-empty. Our setting involves relatively small input sets (e.g., a few hundred items each, at
the most). The leading PSI protocol for sets of this size — in terms of both communication and
running time — is due to Rosulek and Trieu [RT21] (hereafter RT21). We adapt the RT21 protocol
to provide the proof-of-nonempty intersection property, to instantiate the ideal functionality in
Figure 3. Here we simply sketch the main ideas of our simple modification. The details and formal
proof are deferred to Appendix C.

Nearly all PSI protocols, including RT21, use the oblivious PRF (OPRF) paradigm of
[FIPR05]. The parties first run an OPRF protocol, in which the sender learns a PRF seed k,
and a receiver learns F(k, x) for each x in its set, where F is a PRF. The sender learns nothing
about the x values. To obtain a PSI protocol, the OPRF sender sends F(k, y) for every y in its
set. The receiver can determine which items are in the intersection by identifying matching PRF
outputs. PRF outputs of items not in the intersection look random to the receiver.

In order to provide proof of nonempty intersection, we modify the protocol as follows. The
OPRF sender will send h∗ = H(s) to the client, where s is random and H is a collision-resistant
hash. Suppose the output of F is divided into two halves F(k, x) = F1(k, x)∥F2(k, x). Then instead
of sending {F(k, x) | x ∈ X} as before, the sender sends pairs {⟨F1(k, x),Enc(F2(k, x), s)⟩ | x ∈ X}.

20

The receiver can use the F1-values to identify the intersection as before. For any x in the intersection,
she can decrypt the associated ciphertext with the key F2(k, x) to recover s, discarding x from the
intersection if H(s) ̸= h∗. In this way, the receiver learns s if and only if the intersection is
nonempty, so her knowledge of r can serve as proof of a nonempty intersection.

The formal description of the modified protocol, and a proof of the following theorem, are
provided in Appendix C. We also prove security against adaptive corruption, while RT21’s original
proof considers only static corruption.

Theorem 15. The protocol in Figure 8 UC-securely realizes the Fpsi+ functionality (Figure 3)
against adaptive adversaries, in the ideal cipher + random oracle model, assuming a suitable 2-
message key agreement scheme exists.

See Section C for the precise criteria needed for the key agreement scheme. There we also show
a suggested scheme that satisfies these properties under a variant of the Strong Diffie–Hellman
assumption [ABR01].

Other improvements. One of the main components in the RT21 protocol is a key agreement
protocol whose messages are pseudorandom bit strings. In order to support elliptic-curve Diffie-
Hellman key agreement, the suggested key agreement uses the Elligator technique [BHKL13] to
encode elliptic curve elements as uniform bit strings. We observe that a different technique of
Möller [Möl04] results in elliptic-curve-based key agreement at roughly half the computational
cost. The details are given in Section C.1.

7 Implementation and Evaluations

Implementation. We implemented our protocol in C++ and integrated it into both the client and
server of OpenSSH version 8.2p18. We implemented the Multi-KEMs for RSA, ECDSA, and EdDSA
as described in Section 3, using OpenSSH and libsodium. We also adapted the implementation of
the RT21 PSI protocol [RT21], with the modifications described in Section 6. Namely, we added
the proof-of-nonempty-intersection feature, and also incorporated an improved technique for the
underlying key agreement. The implementation of the RT PSI protocol uses Rijndael as a 256-bit
ideal cipher and SHA-256 as a random oracle.

OpenSSH delegates sensitive signing operations to a separate ssh-agent daemon process, which
provides a signing oracle to the SSH client. Since our protocol uses SSH keys as KEM keys, we
added an additional KEM decryption interface to ssh-agent. The remainder of the protocol is
implemented in the SSH client/server processes (i.e., ssh and sshd). Upon publication, we will
make the source code available on GitHub under the same BSD license that OpenSSH uses.

7.1 Experimental Setup

Hardware. All experiments use two desktop machines with 32-core AMD Threadripper 2990WX
running at 3.0Ghz, running Ubuntu 20.04 LTS with 32GB DRAM. We use one machine as SSH
server and the other for running many SSH clients. While the SSH server utilizes multiple cores for
handling multiple clients, we do not use multiple cores to parallelize our authentication protocol.

Network. We ran microbenchmarks over the loopback device to focus on computation time. To
simulate realistic network conditions in a macrobenchmark, we used the tc traffic control utility to
add 42.5 ms latency: the average of local (20ms within US west coast) and distant (65ms between
east and west coast) latencies reported in [Won22].

Keys. We performed SSH authentication on a range of key configurations. For our microbench-
marks, we considered sets of keys that were RSA-only (RSA-3072, which is the default RSA key

8Our implementation is available at https://github.com/osu-crypto/PSIPK-ssh

21

https://github.com/osu-crypto/PSIPK-ssh

size in OpenSSH), EdDSA-only, and ECDSA-only. Hence, we explore the effect of key flavor on
our protocol’s performance. In our macrobenchmark we used a mixture of keys: 92% RSA, 7%
EdDSA, and 1% ECDSA, to model realistic proportions of key flavors according to Github statis-
tics [Coo21]. We also present macrobenchmark results with 100% EdDSA keys to demonstrate
optimal performance.

We tested clients and servers with different numbers of keys: We considered clients with 5
(normal user) and 20 (heavy user) keys. We considered servers with 10 (private server), 100 (mid-
sized git repository), and 1000 (popular git repository) keys.

Reported numbers. For each test case, we report the average over 10 executions. For com-
parison, we also measure the cost of vanilla SSH public-key authentication under the same net-
work/system setup.

7.2 Evaluation Results

Figure 5: Microbenchmark result per each key setup. For each type of key, we vary the number of keys at
the client side for 5 and 20, and we also vary number of authorized keys at the server side for 10, 100, and
1000.

Microbenchmark: performance breakdown. We conducted a microbenchmark of our pro-
tocol to investigate the computation time required for each step. Figure 5 (in appendix) shows the
results.

Legend. We divided the protocol’s computational tasks into the following phases, and measured
the time taken by each: First, the server parses the authorized user’s keys file (parse), and encrypts
the KEM ciphertexts (kem.enc). It must interpolate a polynomial containing all of the RSA ci-
phertexts (rsa interpolate). The KEM messages are then computed by the server (kem.msg). After
receiving the KEM ciphertexts from the server, the client decrypts them using its private keys and
generates a PSI polynomial (client.kem). The server evaluates this polynomial, and generates a
challenge for the client (server.psi). Finally, the client solves this challenge (client.psi), and the
server verifies the solution (verify). A test case named “X Y” indicates that the server has X num-
ber of authorized keys and the client has Y number of available private keys for authentication.

22

Figure 6: Macrobenchmark result for using mixed keys from the Github key statistics [Coo21] and using
only EdDSA keys, for 10 and 1000 keys on the server. In all cases, we use 3 keys on the client side. Each
graph shows the number of connections processed in minutes (line, left Y-axis) and average latency that each
client suffers for the SSH authentication (bar, right Y-axis), by increasing number of concurrently connecting
clients (X-axis). Top two graphs are for mixed keys, middle two graphs are for EdDSA. The bottom two
graphs show the performance of vanilla authentication when using RSA keys.

e.g., 1000 20 refers to a server with 1000 keys and a client with 20 keys, corresponding to a heavy
user authenticating to a very popular git repository.

RSA. RSA keys are the slowest among three key flavors. For a huge number of keys on the
server, e.g., 1000 5 and 1000 20, authentication takes 1,155 ms and 1,196 ms, respectively, while
authentication with fewer than 100 keys needs less than 300 ms. For the server, kem.enc and
rsa interpolate took the majority of computation time. Because the time increases linearly with
the number of authorized keys on the server, these tasks dominate when the server has many keys.
For the client, the client.kem task increases proportionally to number of keys from both server and
client. In the case of relatively many keys for the client relative to the server, the client.kem cost
overwhelms the computing time, as shown on 100 20, 10 20, and 10 5.

23

Auth-type Key-conf RSA ECDSA EdDSA

PSI 100 20 54188 12116 12174
PSI 10 20 13340 8972 9228

Vanilla 10 5 12742 10036 9572
Vanilla 10 1 9642 8582 8242

Table 1: Total communication (in bytes) for a successful authentication, under various key configurations
and key flavors. Note that we do not test 100 keys on the server for vanilla authentication because commu-
nication cost does not depend on the server’s set of keys in vanilla authentication.

ECDSA and EdDSA. Both ECDSA and EdDSA are significantly faster than RSA, and the
performance characteristics of these two are very similar. Even with 1000 keys on the server, the
authentication finishes in less than 216 ms. With fewer than 100 keys, it finishes in less than
27 ms, which is comparable to a typical network delay. Thus, the effect on the user would be
negligible. For these two key types, server-side computation time dominates the entire execution
time. The difference between ECDSA and EdDSA is that ECDSA requires more time to parse the
key. However, EdDSA requires more time on kem.msg, resulting in less than 1% time difference
for 1000 20: 214.83 ms vs. 214.89 ms.

Communication cost. The new protocol incurs not only computational overhead but also
overhead in communication. We measure the communication cost of our protocol and compare
it to vanilla SSH authentication. Table 1 shows the results. With 10 keys on the server and 20
keys on the client, communication overhead for all key flavors is negligible when compared to the
vanilla authentication with 5 keys on the client. When increasing the server-side key number to
100, the message size for both ECDSA and EdDSA does not increase much in size (from 9 kB to
12 kB). However, RSA requires 54 kB of message transfer, which incurs around 4.25 times more in
communication when compared to the vanilla 10 5 case. For vanilla with five client keys, we use
the 5th key for authentication, and thereby include four trials of failed public key probing.

Macrobenchmark: server authentication throughput. We macrobenchmark our protocol,
measuring the authentication throughput (in reqs/min, at the server side) and latency (in seconds,
at the client side). Figure 6 shows the results. Below, we report throughput and latency at the
maximum throughput and compare it to the vanilla SSH authentication.

For mixed key setup (mixed according to Github statistics), a server with 10 keys can process
up to 5,003 reqs/min (83.4 reqs/sec), with clients observing up to 0.83 second of latency. A server
with 1000 keys can process upto 1,869 reqs/min (31.1 reqs/sec), with clients observing up to 3.45
seconds of latency. For pure EdDSA, a server with 10 keys can process up to 14,964 reqs/min
(249.4 reqs/sec), with clients observing up to 0.24 second of latency. A server with 1000 keys can
process upto 8,981 reqs/min (149.6 reqs/sec) while clients may observe 0.79 seconds of latency. As
we observed in microbenchmark, RSA keys are much slower than ECDSA/EdDSA keys, and that
is also consistent in the macrobenchmark.

We compare this result with the throughput/latency of the vanilla SSH authentication. For pure
RSA keys setup, a server with 10 keys can process up to 18,560 reqs/min (309.3 reqs/sec). This
is 3.7 times faster than our protocol with mixed keys, but only 24% faster than our protocol with
EdDSA keys. A server with 1000 RSA keys can process up to 16,500 reqs/min (275.0 reqs/sec),
which is 8.8 times faster than our protocol with mixed keys, but only 85% faster than ours with
EdDSA keys.

In conclusion, our protocol runs comparable to the vanilla SSH authentication when used with
ECDSA/EdDSA keys.

24

8 Discussions

In this section we discuss security, privacy, and usability issues arising from integrating our protocol
into SSH.

Passphrase-protected SSH keys. SSH clients allow users to protect keys with a passphrase,
which must be entered interactively before that key is used for authentication. In a standard
authentication, the client software can collect the passphrase from the user only if the server
requests authentication under that key. In our authentication method, the client effectively makes
authentication attempts under all of its keys. Therefore, a user may need to enter passphrases to
all keys while running our authentication method. Thankfully, ssh-agent can be configured to only
require a passphrase once during the life of the ssh-agen process (e.g., per reboot).

Integrating to Git/SSH. Our protocol assumes that the server has identified the set of autho-
rized keys at the time of authentication (e.g., from ˜/.ssh/authorized keys). Not all applications
may be compatible with this requirement.

We illustrate the issue using Github as an example. When committing changes to GitHub, the
SSH connection is always made to git@github.com. The client reports the name of the repository
only after the SSH authentication, as git@github.com:username/repository. In other words, every
Github user is authorized to connect to username git.

This is not problematic for standard SSH authentication because the server identifies the client
from its public key. In contrast, our new protocol would require the server to encrypt a KEM mes-
sage to the set of all (73 million as of November 2021 [DMR22]) Github users, which is prohibitively
expensive.

In order to integrate our protocol with systems like Github, the server would need to learn
the repository name before the client authentication step. We believe that the SSH username,
which is indeed sent to the server before cient authentication, is a natural way to convey this
information. For example, a client who opts into the new authentication method could use an SSH
connection to, say, repositoryname@new.github.com or username.repository@new.github.com. All
other users could continue to be supported via SSH connections to git@github.com. Github users
could configure which of these two git URL styles is presented to them on the Github website.
Repository owners could choose which flavors of authentication to support when connecting to
their repositories.

Downgrading attacks and Trust on First Use. A mischevious server can simply claim to not
support our privacy-enhancing protocol. When connecting to such a server, the client is forced to
downgrade to a less private, conventional authentication method. Clients should be vigilant about
such downgrade attacks, which completely undermine the protection of our protocol. The same
trust-on-first-use (TOFU) policy for authenticating the server can be applied to this behavior —
e.g., the client software can report an error if the server supported privacy-preserving authentication
in the past but now claims to not support it, similar to the error when a server’s public key has
changed relative to the known hosts file.

Size of key-sets. Our protocol leaks an upper bound on the size of both the client’s and
server’s set of keys. This leakage is another avenue for fingerprinting, although carrying much less
identifying information. Still, users may wish to mitigate this leakage by padding their key sets
with dummy items, up to some fixed size — e.g., the next power of two.

Server-side probing. A server can choose to run our authentication protocol with a strict subset
of the authorized keys. By varying the subset across repeated authentication attempts, the server
could de-anonymize the client’s choice of key via a binary search.

25

However, this attack leads to user-visible authentication failures, and it requires a client to
repeatedly retry after such failures. We leave open the problem of whether our protocol could be
extended to notify clients of extreme changes in the server’s set of keys.

One indication of a probing server may be its use of a very large set of keys. Our protocol
reveals the size of the server’s set to the client, just before the client decides whether to deliver
output to the server. In principle a client could be configured to refuse connection to a server with
a suspiciously high number of authorized keys.

Other authentication methods. SSH supports a lightweight certificate system for authentica-
tion, but supporting it is well beyond our scope. Certificates introduce an extra level of indirection:
the server knows the root signing key but not the keys of individual users, so the protocol would need
to verify two steps of the trust chain. SSH also supports hardware-token-based keys. These tokens
support only signing, and not KEM decryption, making them incompatible with our approach.

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assump-
tions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020
of LNCS, pages 143–158. Springer, Heidelberg, April 2001.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), page 307–314,
New York, NY, USA, 1968. Association for Computing Machinery.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in multi-
recipient encryption schemeas. In Yvo Desmedt, editor, PKC 2003, volume 2567 of
LNCS, pages 85–99. Springer, Heidelberg, January 2003.

[BBW06] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted content distribution
using private broadcast encryption. In Giovanni Di Crescenzo and Avi Rubin, editors,
FC 2006, volume 4107 of LNCS, pages 52–64. Springer, Heidelberg, February / March
2006.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89,
September 2012.

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon, and
Hao-Chi Wong. Secret handshakes from pairing-based key agreements. In 2003 IEEE
Symposium on Security and Privacy, pages 180–196. IEEE Computer Society Press, May
2003.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 967–980.
ACM Press, November 2013.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November
2006.

26

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[Bro02] Daniel R. L. Brown. Generic groups, collision resistance, and ECDSA. Contributions
to IEEE P1363a, February 2002. Updated version for “The Exact Security of ECDSA.”
Available from http://grouper.ieee.org/groups/1363/.

[Coo21] Matt Cooper. Improving Git protocol security on GitHub, 2021. https://github.blog/
2021-09-01-improving-git-protocol-security-github/.

[Cox15] Ben Cox. Auditing GitHub users’ SSH key quality. Blog post. https://blog.benjojo.co.
uk/post/auditing-github-users-keys, 2015.

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor,
EUROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg, April 1991.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

[DJKT09] Emiliano De Cristofaro, Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Privacy-
preserving policy-based information transfer. In Ian Goldberg and Mikhail J. Atallah,
editors, PETS 2009, volume 5672 of LNCS, pages 164–184. Springer, Heidelberg, August
2009.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 609–626. Springer, Heidelberg, May 2004.

[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set inter-
section protocols secure in malicious model. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 213–231. Springer, Heidelberg, December 2010.

[DLP+12] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P. Smart, and Mario
Strefler. On the joint security of encryption and signature in EMV. In Orr Dunkel-
man, editor, CT-RSA 2012, volume 7178 of LNCS, pages 116–135. Springer, Heidelberg,
February / March 2012.

[DMR22] DMR. GitHub Statistics, User Counts, Facts & News (2022), 2022. https://
expandedramblings.com/index.php/github-statistics/.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th ACM
STOC, pages 409–418. ACM Press, May 1998.

[DT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages
143–159. Springer, Heidelberg, January 2010.

[FHH10] Chun-I Fan, Ling-Ying Huang, and Pei-Hsiu Ho. Anonymous multireceiver identity-based
encryption. IEEE Transactions on Computers, 59(9):1239–1249, 2010.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378 of
LNCS, pages 303–324. Springer, Heidelberg, February 2005.

27

http://grouper.ieee.org/groups/1363/
https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://expandedramblings.com/index.php/github-statistics/
https://expandedramblings.com/index.php/github-statistics/

[FKP16] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security of (EC)DSA
signatures. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1651–1662. ACM Press, October
2016.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 395–425,
Virtual Event, August 2021. Springer, Heidelberg.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98.
ACM Press, October / November 2006. Available as Cryptology ePrint Archive Report
2006/309.

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
algebraic-geometric codes. In 39th FOCS, pages 28–39. IEEE Computer Society Press,
November 1998.

[JKT08] Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Beyond secret handshakes: Affiliation-
hiding authenticated key exchange. In Tal Malkin, editor, CT-RSA 2008, volume 4964
of LNCS, pages 352–369. Springer, Heidelberg, April 2008.

[JL07] Stanislaw Jarecki and Xiaomin Liu. Unlinkable secret handshakes and key-private group
key management schemes. In Jonathan Katz and Moti Yung, editors, ACNS 07, volume
4521 of LNCS, pages 270–287. Springer, Heidelberg, June 2007.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Private mutual authentication and conditional obliv-
ious transfer. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 90–107.
Springer, Heidelberg, August 2009.

[Kur02] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened ciphertext. In
David Naccache and Pascal Paillier, editors, PKC 2002, volume 2274 of LNCS, pages
48–63. Springer, Heidelberg, February 2002.

[KY07] Aggelos Kiayias and Moti Yung. Cryptographic hardness based on the decoding of reed-
solomon codes. Cryptology ePrint Archive, Report 2007/153, 2007. https://eprint.iacr.
org/2007/153.

[LPQ12] Benôıt Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous broadcast
encryption: Adaptive security and efficient constructions in the standard model. In Marc
Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of
LNCS, pages 206–224. Springer, Heidelberg, May 2012.

[MKJR16] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch. PKCS #1: RSA
Cryptography Specifications Version 2.2. RFC 8017, November 2016.

[Mob22] Mobatek. MobaXterm, 2022. https://mobaxterm.mobatek.net/.

[Möl04] Bodo Möller. A public-key encryption scheme with pseudo-random ciphertexts. In
Pierangela Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Refik Molva, editors,

28

https://eprint.iacr.org/2007/153
https://eprint.iacr.org/2007/153
https://mobaxterm.mobatek.net/

ESORICS 2004, volume 3193 of LNCS, pages 335–351. Springer, Heidelberg, September
2004.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In
Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 376–392. Springer,
Heidelberg, February 2011.

[MPT10] Mark Manulis, Bertram Poettering, and Gene Tsudik. Taming big brother ambitions:
More privacy for secret handshakes. In Mikhail J. Atallah and Nicholas J. Hopper,
editors, PETS 2010, volume 6205 of LNCS, pages 149–165. Springer, Heidelberg, July
2010.

[MRR21] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Batching base oblivious transfers. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, pages 281–310, Cham,
2021. Springer International Publishing.

[Nao02] Moni Naor. Deniable ring authentication. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 481–498. Springer, Heidelberg, August 2002.

[Nat16] National Vulnerability Database. CVE-2016-20012 detail, 2016. https://nvd.nist.gov/
vuln/detail/CVE-2016-20012.

[NKS+17] Matus Nemec, Dusan Klinec, Petr Svenda, Peter Sekan, and Vashek Matyas. Measuring
popularity of cryptographic libraries in internet-wide scans. In Proceedings of the 33rd
Annual Computer Security Applications Conference, pages 162–175, 2017.

[NSW09] Gregory Neven, Nigel Smart, and Bogdan Warinschi. Hash function requirements for
schnorr signatures. Journal of Mathematical Cryptology, 3(1):69–87, 2009. Other identi-
fier: 2001023.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems
for the security of cryptographic schemes. In Kwangjo Kim, editor, PKC 2001, volume
1992 of LNCS, pages 104–118. Springer, Heidelberg, February 2001.

[Ope22a] OpenSSH. OpenSSH, 2022. https://www.openssh.com/.

[Ope22b] OpenSSH. OpenSSH-Portable, 2022. https://github.com/openssh/openssh-portable/
blob/master/auth2-pubkey.c#L280-L286.

[PuT22] PuTTY. Download PuTTY, 2022. https://www.putty.org/.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg,
December 2001.

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small
sets. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’21, page 1166–1181, New York, NY, USA, 2021. Association for
Computing Machinery.

[Sie16] Chris Siebenmann. Your SSH keys are a (potential) information leak, 2016. https:
//utcc.utoronto.ca/∼cks/space/blog/tech/SSHKeysAreInfoLeak.

29

https://nvd.nist.gov/vuln/detail/CVE-2016-20012
https://nvd.nist.gov/vuln/detail/CVE-2016-20012
https://www.openssh.com/
https://github.com/openssh/openssh-portable/blob/master/auth2-pubkey.c#L280-L286
https://github.com/openssh/openssh-portable/blob/master/auth2-pubkey.c#L280-L286
https://www.putty.org/
https://utcc.utoronto.ca/~cks/space/blog/tech/SSHKeysAreInfoLeak
https://utcc.utoronto.ca/~cks/space/blog/tech/SSHKeysAreInfoLeak

[SSH22] SSH.COM. What is SSH public key authentication?, 2022. https://www.ssh.com/
academy/ssh/public-key-authentication.

[Val15a] Fillipo Valsorda. SSH whoami.filippo.io. Blog post. https://blog.filippo.io/
ssh-whoami-filippo-io/, 2015.

[Val15b] Fillipo Valsorda. whoami.filippo.io: an ssh server that knows who you are. Github
repository. https://github.com/FiloSottile/whoami.filippo.io, 2015.

[Won22] WonderNetwork. Global Ping Statistics, 2022. https://wondernetwork.com/pings.

[ZC17] Yongjun Zhao and Sherman S. M. Chow. Are you the one to share? Secret transfer with
access structure. PoPETs, 2017(1):149–169, January 2017.

[ZLZL15] Fu-Cai Zhou, Mu-Qing Lin, Yang Zhou, and Yu-Xi Li. Efficient anonymous broadcast en-
cryption with adaptive security. KSII Transactions on Internet and Information Systems
(TIIS), 9(11):4680–4700, 2015.

30

https://www.ssh.com/academy/ssh/public-key-authentication
https://www.ssh.com/academy/ssh/public-key-authentication
https://blog.filippo.io/ssh-whoami-filippo-io/
https://blog.filippo.io/ssh-whoami-filippo-io/
https://github.com/FiloSottile/whoami.filippo.io
https://wondernetwork.com/pings

A Security Proofs for Multi-KEMS

A.1 EdDSA

Lemma 8. Any attack A against the joint security of the MKEMSS EdDSA implies an attack A′

against the GapCDH problem. A′ takes approximately twice the computation of A, and

Adv[A] ≤

√
qH

(
Adv[A′]

P 2
+

1

ℓ

)
+

qHqS
ℓ

,

where A makes qH queries to the random oracle H and requests qS signatures.

Proof. We give a hybrid proof. Note that Dec(sk, C) = m if and only if Gsk, C,m are a DH tuple,
which is something that a simulator can check using the guess oracle of the GapCDH game.
In the hybrid, replace the oracles in the MKEMSS game with the following simulations, where
pk∗ = A = Ga, B = Gb are sampled at the start with a, b←M :

guess msg(C, pk,m):

return m ∈ G ∧ guess(pkf , Cf ,mf)

guess dec(C,m):

return guess msg(C, pk∗,m)

X := empty map
encrypt(PK):

x← Z/ℓZ
C := BGx

X[C] := x
return C

sign(m):

if m already signed:
return old signature

s, h← Z/ℓZ
R := GsA−h

H(R,A,m) := h
return (R, s)

check clears the cofactor so that the curve points are in the prime order subgroup, which is
required to use guess. This loses the cofactor information from C and m, but the former was
cleared anyway because f | a, well the latter is only important because if m /∈ G then m ̸= Ca ∈ G.
The challenge ciphertexts output by encrypt are rerandomizations of B, to force A to solve the
GapCDH instance if it manages to decrypt any. sign simulates the signatures by sampling the
random oracle output h in advance, then computing the R that will make the signature verify.
These simulations behave identically to the real MKEMSS oracles, assuming that the hash value
H(R,A,m) was not already evaluated. There have been at most qH previous queries to H with
this m, so this bad event gives the adversary an advantage of at most qHqS/ℓ, by the union bound.

Now, we give a reduction, but to a slightly modified GapCDH assumption where a and b continue
to be sampled from M . Define a new adversary A′, and let AdvM [A′] be the advantage of A′ against
this modified GapCDH game. A′ runs A, and uses its output to attack the GapCDH challenge. A′

can check for correct signatures using Verify, and for correct decryptions using check. If A returns
neither, we have made no progress — abort the attack. If A outputs a correct decryption m of
a ciphertext C, then A′ solves the GapCDH instance as Ba = CaA−x = mA−x where x = X[C].
Finally, if A returns only a forged signature (R, s) of a message m, we need to rewind to attempt
extraction.

Rewind back to the first evaluation of h = H(R,A,m), for the R and m output by A. Resample
it as h′ ← Z/ℓZ, then run A again starting from here, resampling subsequent oracle queries as well.
Again, if A outputs a correct decryption, A′ can solve for Ba. If A outputs another forged signature

31

(R, s′) for the same messagem, and h′ ̸= h, then the private key can be extracted as a = s′−s
h′−h mod ℓ,

and the GapCDH instance solved by computing Ba. Otherwise, A′ aborts the attack.
There are two exclusive cases where A succeed. Let PMKEM be the probability that A finds

a correct decryption, and PSS be the probability that A fails to find a correct decryption, but
successfully forges a signature. Then Adv[A] = PMKEM + PSS , and AdvM [A′] = PMKEM +
PSSPMKEM+PR, where PR is the probability that the rewinding was successful and A′ uses the two
forged signatures to solve for a. By the general forking lemma [BN06], we have PR ≥ PSS

(
PSS
qH
− 1

ℓ

)
.

Then,

AdvM [A′] ≥ PMKEM + PSSPMKEM +
P 2
SS

qH
− 1

ℓ

≥ PMKEM

qH
Adv[A] + PSSPMKEM

qH
+

P 2
SS

qH
− 1

ℓ

=
PMKEM

qH
Adv[A] + PSS Adv[A]

qH
− 1

ℓ

=
(Adv[A])2

qH
− 1

ℓ

Finally, we need to lower bound Adv[A′], the success probability against the original GapCDH
assumption. We know that there is probabilty P 2 of a and b being in M mod ℓ, and in this case
A′ will succeed with probability AdvM [A′]. Therefore, Adv[A′] ≥ P 2AdvM [A′]. Rearrange to get
the stated upper bound on Adv[A].

A.2 ECDSA

Lemma 9. If H is collision resistant and zero-finder-resistant, then ECDSA is a jointly secure
MKEMSS in the GGM.

Proof. The result proved in [DLP+12] used the related ECIES encryption scheme, and proved that
the KEM key was indistinguishable from random, rather than just being unguessable. In ECIES,
indistinguishability is achieved by hashing the KEM key: ECIES.Dec(a,C) = KDF((Ca)x). The
assumptions [DLP+12] requires for KDF are not given explicitly, but a random oracle should be
sufficient. The assumptions they require for H are the ones given in the statement of this lemma.
Under these assumptions, they prove that the adversary’s advantage against the joint signature
and encryption scheme ECIES+ECDSA is at most O(q2G/ℓ) plus its advantage against H, where
qG is the number of group operations performed.

Note that, unlike our ECDSA.Dec, ECIES.Dec only depends on the x-coordinate so both C and
C−1 give the same key. Although earlier in their paper they point out that this means they need
to slightly weaken the IND-CCA definition so that the adversary isn’t allowed to asked for the
decryption of either C or C−1, they do not address this distinction in their proof. While their
proof is likely still sound, since this only requires a few small modifications to fix, it clearly shows
that a modified scheme ECIES′ where Dec(a,C) = KDF(Ca) uses the whole curve point and not just
the x-coordinate would also be secure. We prove that our scheme is a jointly secure MKEMSS by
giving a reduction to the joint IND-CCA and EUF-CMA security of ECIES′.

Let A be an adversary against the MKEMSS game for ECDSA, and construct from it new
adversaries A′ and A′′ against the IND-CCA and EUF-CMA games of ECIES′, respectively. A′

will succeed when A would successfully guess a decryption, and A′′ will succeed when A would
successfully forge a signature. Both A and A′ run A, passing through the public key A and the
sign oracle. encrypt are simulated as follows.

32

X := empty map
encrypt(PK):

x← Z/ℓZ
C := BGx

X[C] := x
return C

Here, B is the challenge ciphertext given by the IND-CCA game, or just a uniformly sampled curve
point for A′′. Though it rerandomizes to concentrate the attack on B, encrypt is indistinguishable

from the real encrypt oracle. Finally, check(C,m) =
(
decrypt(C)

?
= KDF(m)

)
, using the

ECIES′ decryption oracle, since ECIES′.Dec(a,C)
?
= KDF(m) is equivalent to Ca ?

= m.9 In IND-
CCA, decrypt isn’t allowed to be used on the challenge ciphertext B. However, A has negligible
probability of guessing B, because encrypt’s behavior is statistically independent of B. Therefore,
A can’t tell the difference between these simulated oracles and the real ones provided by the
MKEMSS security game.

Finally, if A outputs a correct decryption m of some C output by encrypt, A′ can solve for
Ba = CaA−x = mA−x, where x = X[C], and check whether in matches the decryption KDF(Ba)
that it must distinguish from random. If A outputs a forged signature, A′′ can pass this on to the
EUF-CMA game. Either way, A′ and A′′ have advantage negligibly distant from the chance that
A breaks the corresponding part of the joint scheme.

A.3 RSA

Lemma 10. The EUF-CMA security of the RSA signature scheme implies that RSA is a jointly
secure MKEMSS.

Proof. Let A be a PPT adversary against MKEMSS security. We construct a new adversary A′

that has similar runtime and almost identical advantage to A, but against EUF-CMA instead of
MKEMSS. Let pk∗ = (N, e) be the public key under attack. First, A′ picks a uniformly random
message m∗ ∈ {0, 1}λ and finds c∗ = PKCSN (m∗). The reduction will force A to find the signature
s∗ = c∗ d for m∗ if it successfully decrypts a KEM message encrypted with pk.

Run Aencrypt,guess dec,guess msg,sign(pk), where the oracles encrypt, guess dec, guess msg
are simulated as follows. First, we observe that the guess dec,guess msg oracles give no addi-
tional power to the adversary. Since MKEM decryption is essentially just the RSA trapdoor inverse,
a plaintext guess can be verified by applying RSA trapdoor in the forward direction. Namely,

guess msg(C, pk = (N, e),m):

for i := 0 to s(N)− 1:
ci := C(H(N, e, i))

c := UnchkN ({ci}i)
return c

?
= me mod N

guess dec(C,m):

return guess msg(C, pk∗,m)

The simulated encrypt oracle works almost as normal, but with the call to Enc1(pk∗) for the target
public key replaced with encrypt1, which uses rerandomization to turn c∗ into many independent
ciphertexts. Each will still be uniformly random, because c∗ is in the multiplicative group (Z/NZ)×
with all but negligible probability.

9Unless a KDF collision is found, but that has negligible probability.

33

encrypt1():

r ← Z/NZ
c := c∗re mod N
R[c] := r
return c

Now, forA to win the MKEMSS game, it must either forge a signature (m, s), which immediately
lets A′ attack EUF-CMA, or find a decryption m under the target key sk of some C generated by
encrypt. A′ extracts a signature forgery as follows:

// given (m, s,C) such that RSA.Dec(sk∗, C) = m

for i := 0 to s(N)− 1:
ci := C(H(N, e, i))

c := UnchkN ({ci}i)
r := R[c mod N]
output s∗ = m/r mod N

Recall that c was originally generated as c = c∗re mod N = PKCSN (m∗)re mod N . Hence s∗ is the
correct PKCS signature of the random message m∗.

Lemma 11. RSA is anonymous with leakage RSA.Leak(PK) = s(PK). The distinguisher has an
advantage of at most 2−λ−2tE +

∣∣2−2λ|F| − 1
∣∣tS, where tE and tS are the totals of |PK| and s(PK)

over all calls to encrypt(PK), respectively.

Proof. We first need to define a simulator that generates a dummy ciphertext given only the leakge
L and the set of adversarially chosen keys. The adversarial keys PKadv are easy to handle: we
address RSA.Enc1 ciphertexts to them as normal. We don’t know the honest keys — we only know
from the leakage L that we should produce a polynomial of degree up to L. Therefore, the simulator
samples C as uniformly random polynomial with degree less than L that interpolates through the
correct points for the adversarial keys.

RSA.AnonSim(L,PKadv):

S := ∅
M := empty map
// honestly construct Enc1 ciphertexts for keys in PKadv

for (N, e) ∈ PKadv:
c, r ← RSA.Enc1((N, e))
M [(N, e)] := r
c0, . . . , cs(N)−1 ← ChkN (c)

for i := 0 to s(N)− 1:
S := S ∪ {(H(N, e, i), ci)}

// randomly increase number of interpolation points to L

while |S| < L:
(a, b)← F
S := S ∪ {(a, b)}

C := interpolF(S)
return (C,M, view = (C,M))

Later AnonView may be asked to produce an R-value for this ciphertext that “explains” its decryp-
tions with respect to honest keypairs. AnonView is given the secret keys for those honest keypairs

34

when this happens. Hence, it can simply decrypt the given ciphertext under each of those secret
keys. These plaintexts would have been the only randomness in a real-world ciphertext.

RSA.AnonView(view = (C,M),S):
// M already contains the decryptions under the adversarial keys

R := M
for (N, e, d) ∈ S:
R[(N, e)] := RSA.Dec((N, e, d), C)

return R

We now give a hybrid proof that the real world, where (C,R,M) are generated with encrypt,
is indistinguishable from the ideal world, where they are generated by AnonSim and AnonView.
Intermediate hybrids run in exponential time, but the bounds in the proof hold even with respect
to unbounded adversaries.

1. Start with the real world, and in encrypt separate the honestly generated keys PKhon =
PK∩PK∗ from the adversarial keys PKadv = PK\PK∗. Treat the adversarial keys as in the real
world. For the honest keys (N, e) ∈ PKhon, compute r and c in reverse order. That is, first
sample c← [0, N)∩Z and then compute r such that re = c mod N using an exponential-time
algorithm. This is indistinguishable from the real world because (·)e is a bijection on Z/NZ.

2. In the previous hybrid, for honest keys in PKhon we first sample c, then calculate r and
ChkN (c). In the next hybrid, we first sample c0, . . . , cs(N)−1 = ChkN (c) uniformly (each

component from the range [0, 22λ)), then compute c = UnchkN (c0, . . . , cs(N)−1), then solve
for r.

ChkN and UnchkN can be viewed as bijections between [0, 22λ)s(N) and [0, 22λs(N)), but ChkN
does not induce a uniform distribution over its range. Indeed, sometimes the c′ value that
it generates can overflow the range. Let M = 22λs(N) mod N . The probability of that bad
event (c′ ≥ 22λs(N)) is M

22λs(N) (1 − M
N), since it occurs iff p ≥ 22λs(N) −M and c ≥ M . This

quadratic is maximized at M = N/2, so it is upper bounded by N2

22λs(N)+2N
< 2−λ−2. Taking a

union bound over all calls to Chk gives the first term of the distinguisher bound in the lemma
statement.

Suppose we abort when the bad event occurs, then ChkN induces a uniform distribution over
its range. In this case, sampling the output of ChkN first and then solving for its input (with
UnchkN) induces an identical distribution.

3. In this hybrid, sample the ci’s uniformly in F, instead of [0, 22λ). The distinguisher has

advantage at most
||F|−22λ|

max(|F|,22λ) ≤
||F|−22λ|

22λ
=
∣∣2−2λ|F| − 1

∣∣, since sampling from F and [0, 22λ)∩
Z can only be distinguished when the sample from the bigger set is outside the subset of
values that correspond to the smaller set. Multiply this advantage by tS , to handle all the ci.

4. In the previous hybrid, we interpolate a polynomial C through a set of points corresponding
to honest RSA.Enc1 ciphertexts for adversarial keys, plus a random collection of other points,
so that there are L total points of interpolation. Then for each honest key (N, e), we compute
its RSA.Enc1 ciphertext c with UnchkN , and solve for its plaintext r-value by inverting RSA
in exponential time.

If the secret key d for (N, e) were available at the time of this last step, then we could instead
compute r in polynomial time as r = cd mod N . But this corresponds exactly to the situation

35

in the ideal world interaction. Namely, C is generated first, and then later when the honest
secret keys are available, we compute their associated plaintext values.

A.4 Mixed-flavor KEM

Lemma 12. MixKEM is a jointly secure MKEMSS if every flavor in FLAVORS is.

Proof. LetA be an adversary againstMixKEM for some generation options (f, opts) ∈ MixKEM.FLAVORS.
Construct an adversary A′ against the security of the MKEMSS f. A′ will run A, passing through
the public key and the oracles check and sign. The last oracle, encrypt, is simulated as:

encrypt(PK):

(C,R)← MixKEM.Enc(PK)
PKf := {pk | (f, pk) ∈ PK}
(C[f], r)← f.encrypt(PKf)
return C

It is almost the same as the real encrypt oracle for MixKEM, except that it generates the ciphertext
for the key flavor f using the encryption oracle from the security game for f. Therefore, if Amanages
to guess a decryption then A′ can immediately output that decryption and win the security game
against f. Similarly, if A manages to forge a signature with pk then A′ can immediately use that
signature to win. The simulated oracles are indistinguishable from the real ones, so A and A′ have
the same advantage against their respective games.

Lemma 13. MixKEM is anonymous, assuming that every f ∈ FLAVORS is, with advantage is
bounded by the total advantage against all the individual flavors’ anonymities.

Proof. Simulate the ciphertexts by running the simulators of the individual multi-KEM flavors.
The leakage L tells us what flavors are needed, as well as their individual leakages.

MixKEM.S(L,PKadv):

F := {f | (f, Lf) ∈ L}
C := empty map
for f ∈ F :

PKf := {pk | (f, pk) ∈ PKadv}
find unique Lf s.t. (f, Lf) ∈ L
c← f.S(Lf ,PKf)
C[f] := c

return C

Number the flavors in FLAVORS as f1, . . . , fN . We give a hybrid proof with N + 1 hybrids — one
change for each flavor. Let hybrid 0 be the real world, where C is generated with encrypt. In
hybrid i, the ciphertexts C[f1], . . . , C[fi] are sampled with the simulator f.S, while the remaining
ciphertexts C[fi+1], . . . , C[fN] are still real encryptions from f.Enc. The change from hybrid i− 1 to
i consists of replacing a real ciphertext C[fi] with its simulation, and so reduces to the anonymity
of fi. Hybrid N is the ideal world, where C is generated with MixKEM.S.

A.5 Adaptive Security

To prove adaptive security of our authentication protocol, we use an adaptive variant of wCCA
security (and hence joint MKEMSS security) of an MKEM. Recall that in MKEM-wCCA security,
the adversary can request challenge ciphertexts encrypted to the challenge public key (among other

36

keys). The adversary wins the game by predicting Dec(sk∗, c) for one of these challenge ciphertexts
c.

Challenge ciphertexts are generated as (c, r)← Enc(· · ·). In the adaptive variant of this game,
the adversary can ask for any challenge ciphertext’s associated r to be revealed. Of course, this
makes it trivial to compute Dec(sk∗, c) = Msg(pk∗, r) by the correctness of the MKEM. So the
game no longer considers this c a valid challenge ciphertext — i.e., the adversary wins by predicting
Dec(sk∗, c) for one of the challenge ciphertext whose corresponding r was not revealed.

Definition 16. A multi-KEM MKEM is adaptively secure against chosen ciphertext attacks
if for all opts ∈ MKEM.OPTS, every PPT adversary A has negligible probability of winning the game:

R := empty
(pk∗, sk∗)← MKEM.Gen(opts)

encrypt(PK):

(c, r)← MKEM.Enc({pk∗} ∪ PK)
R[c] := r
return c

guess dec(c,m):

return MKEM.Dec(sk∗, c)
?
= m

guess msg(c, pk,m):

if R[c] defined:

return MKEM.Msg(pk, R[c])
?
= m

open(c):

r = R[c]
R[c] := undefined
return r

(c,m)← Aencrypt,guess dec,guess msg, open (pk∗)

win if R[c] defined ∧MKEM.Dec(sk∗, c) = m

Adaptive joint security of a MKEMSS is defined analogously, following the pattern of Defini-
tion 7.

Static security implies adaptive: Any scheme satisfying the static MKEM definition also
satisfies the adaptive definition, although with some security loss.

Define the concurrency of an adversary in the adaptive wCCA game as the maximum number
of valid challenge ciphertexts at any time — i.e., the maximum number of values stored in the map
R at any time.

Lemma 17. If an MKEM scheme satisfies static wCCA security (Definition 5) then it also satisfies
the adaptive variant. For any adversary A, its advantage in attacking the adaptive game is bounded
by Adv[A] ≤ N · Adv[A′], where A′ is an adversary with roughly double the running time of A,
attacking the static game, and N is an upper bound on the concurrency of A.

Proof. Let A be an adversary attacking the adaptive security game. For each challenge ciphertext
c requested during the game, assign it a label lbl(c) ∈ {1, . . . , N} as follows: Start the game with a
pool {1, . . . , N} of available labels. When a challenge ciphertext is generated, assign it the smallest
label in the pool, and remove that label from the pool. When the adversary calls open on any

37

challenge ciphertext c, return its label to the pool. This process always assigns a unique label to
all challenge ciphertexts, if N is indeed an upper bound on the concurrency of the adversary.

Recall that A wins the adaptive wCCA game if it predicts Dec(sk∗, c) for an active challenge
ciphertext c. We now construct A′, an adversary in the static wCCA game satisfying Adv[A′] ≥
1
N Adv[A]. Our A′ proceeds by first guessing the label lbl∗ ← {1, . . . , N} of the challenge ciphertext
that A will use to win the game. A′ will run A, ensuring that A’s view is independent of the guess
lbl∗, and that it is distributed identically to the adaptive game. Then we will show that A′ wins in
the static game whenever A wins in the adaptive game using a ciphertext with label lbl∗. This will
establish the desired bound.
A′(pk∗) internally runs A(pk∗) and manages its oracle queries as follows:

• When A calls encrypt(PK), determine the label of the resulting ciphertext. If it will have
label lbl∗, then call our own encrypt(PK) oracle and return the result. If it will not have
label lbl∗, then generate the challenge ciphertext ourselves as (c, r)← Enc(PK); store R[c] = r.

• When A calls guess dec(c,m): If lbl(c) ̸= lbl∗ then we know R[c] and can compute the result

as m
?
= Msg(pk∗, R[c]). If lbl(c) = lbl∗ (or if c has no label) then forward this query to our

own guess dec oracle and return the result. This equals m
?
= Dec(sk∗, c) by the correctness

of the MKEM.

• When A calls guess msg(c, pk,m): If lbl(c) ̸= lbl∗ then we know R[c] and can compute the

result as m
?
= Msg(pk∗, R[c]). If lbl(c) = lbl∗ (or if c has no label) then forward this query to

our own guess msg oracle and return the result.

In this way, A′ manages everything to do with non-lbl∗ challenge ciphertexts, but lets the external
static wCCA security game manage the lbl∗ challenge ciphertexts.

What happens when A calls its open oracle on a challenge ciphertext c? If lbl(c) ̸= lbl∗ then
A′ knows the corresponding R[c] and can return it as the oracle response. The problem is when A′

requests that a lbl∗-labeled ciphertext be opened.
To handle this, we modify how lbl∗-labeled challenge ciphertexts are generated. Whenever A

calls encrypt and the result will have label lbl∗, save the current state of A and then toss a
random coin b. This b will represent a guess of whether this particular challenge ciphertext will be
the “winning one” or it will be eventually open’ed (the two possibilities are mutually exclusive).

If b = 0 then handle this ciphertext c locally (as if it did not have label lbl∗). If A later asks
for this ciphertext to be open’ed or A terminates the game without winning, then we can respond
correctly since we know the corresponding r. If instead, A later satisfies the winning predicate for
the adaptive game using this c, then it does not represent a win for A′ in the static game, because
c is not actually a challenge ciphertext in the static game. In this case, rewind to the saved state
and completely resample a fair coin b. Proceed as usual, with fresh randomness.

If b = 1 then delegate the handling of this ciphertext c to the static-wCCA game oracles, as
described above. If A later satisfies the winning predicate for its adaptive game using c, then the
same guess will satisfy the winning predicate for A′ in the static game. If instead, A later asks
for open(c) then A′ cannot respond correctly, since c was generated by the external static-wCCA
game which does not provide a way to obtain the corresponding r. In this case, rewind to the saved
state and completely resample a fair coin b. Proceed as usual, with fresh randomness. We should
similarly rewind if A terminates the game without winning or opening c, since b = 1 corresponds
to a guess that A will win the game using this ciphertext. Rewinding only affects the internal
simulation of A but is not visible to the static wCCA game in which A′ plays. After rewinding, the

38

ciphertext c is still considered a challenge ciphertext in the external static wCCA game; however,
A′ will never refer to it again.

The important features of this strategy for A′ are:

• Even after any amount of rewinding, A’s view is distributed identically to its view in the
adaptive game. This is because each rewind uses fresh randomness.

• A’s view is independent of b, and therefore the probability that A′ will need to rewind is 1/2,
for each time b is sampled.

• There is only one challenge ciphertext with label lbl∗ at a time. This implies that “rewindings”
are not nested or recursive. The only possible rewinding is to the point where the most recent
lbl∗-labeled challenge ciphertext is generated.

From these observations, we have that Pr[A′ wins] ≥ 1
N Pr[A wins], as desired. The expected

running time of A′ is on average twice that of A, since each challenge ciphertext leads to 1 rewinding
in expectation.

Alternatively, we can have A′ abort if a single call to encrypt leads to more than λ consecutive
rewindings. This leads to an A′ with strict polynomial time at most λ times that of A, and
Adv[A′] ≥ 1

N Adv[A]− q2−λ, where A calls encrypt at most qN times.

B Proof of Main Protocol

We prove our authentication protocol secure against adaptive adversaries. This proof uses the
adaptive variant of our MKEM-CCA security definition, presented in Section A.5. In short, we
modify the game in Definition 5 to provide a way for the adversary to adaptively reveal the r value
for challenge ciphertexts.

In Lemma 17 we showed that the static CCA property implies the adaptive one (with some
security loss). Our main security theorem below is stated in terms of the static CCA definition.

Theorem 14. The protocol in Figure 4 is an adaptively UC-secure protocol realizing ideal function-
ality Fnew-auth (Figure 2), assuming that MKEM is anonymous (Definition 6) and joint-MKEMSS
secure (Definition 7). The advantage of any distinguisher A between the real protocol and its sim-
ulation is bounded by

Adv[A] ≤ 2−2λ−1N2
auth +

∑
pk

max(Npk, 1)Adv[A′]

+ Adv[A′′] +NauthAdv[A′′′],

where A′, A′′, and A′′′ are adversaries against the joint security, anonymity, and correctness of
MKEM, respectively. Here, Nauth is the total PSI input set size across all evaluations of auth, and
Npk is the maximum number of concurrent auth attempts in which honest servers use the public
key pk.

Simulator. We start by describing the simulator. Only the auth protocol is non-trivial to
simulate — the simulator never even finds out when the signature-related commands are executed.
The pseudocode for the auth simulator is given in Figure 7. The simulator needs to play many
roles to fake the protocol’s execution. For clarification, every action is annotated by which entity
the simulator is acting as.

Although we prove adaptive security, the simulator is still separated into the two main cases:
honest server and honest client. Each simulates the behavior of the honest party, as seen by the
corrupted party. To handle all cases for when corruption might occur, the high level control flow
of the simulator works as follows.

39

when (auth1, (PS, PC, ssid), ·) starts:
PC: get leakage (L,PKunreg) from Fnew-auth

(c,M∗, view)← MKEM.AnonSim(L,PKunreg)

// if PS adaptively corrupted during this auth session,
// run this subroutine to simulate PS’s internal state

on corrupt(KS):

SK := {}
for pk ∈ KS:

A: send (get sk, pk) to Fnew-auth; receive sk
SK := SK ∪ {sk}

r ← AnonView(view,SK)
PS: give r and KS to the adversary
PS: send c to PC

Fpsi+: receive MC from PC

for ⟨pk,m⟩ ∈MC:
A: send (get sk, pk) to Fnew-auth; receive sk

if sk ̸= ⊥: M∗[pk] = MKEM.Dec(sk, c)

K̃C = {pk | ⟨pk,M∗[pk]⟩ ∈MC}
PC: send (auth2, (PS, PC, ssid), K̃C) to Fnew-auth

PC: receive A and |KS| from Fnew-auth

Fpsi+: send |KS| and {⟨pk,M∗[pk]⟩ | pk ∈ A} to PC

Fpsi+: receive (deliver, ssid, d) from PC

PC: send (deliver, ssid, d) to Fnew-auth

(a) Corrupt client; honest server.

when PS sends c to PC for session ssid:
PS: send (auth1, (PS, PC, ssid), ∅) to Fnew-auth

PS: receive |KC| from Fnew-auth

Fpsi+: send |KC| to PS

Fpsi+: receive MS from PS

M∗ := empty
for (pk,m) ∈MS:

A: send (get sk, pk) to Fnew-auth; receive sk
if sk ̸= ⊥: M∗[pk] := MKEM.Dec(sk, c)

K̃S := {pk | ⟨pk,M∗[pk]⟩ ∈MS}
PS: send (auth3, (PS, PC, ssid), K̃S) to Fnew-auth

PS: receive e ∈ {0, 1} from Fnew-auth

Fpsi+: send e to PS

(b) Corrupt server; honest client.

Figure 7: Simulators for adaptive security of Figure 4. The simulator plays a number of roles in the
protocol, so each action is annotated by who the simulator is pretending to be when it takes the action.

• When an auth interaction starts, check the corruption status of both the client and the server.
Nothing needs to be done when they are both honest.

• When one of the parties gets corrupted, we need to generate a state to send to the adversary.
The easiest way to do this is to run the corresponding simulator from Figure 7 from the start.
That is, simulate the protocol transcript that would have occurred if that party had been
corrupted since the start of auth, but followed the honest protocol anyway.10 This produces
states for both the corrupted party and the simulator of the honest party.

• While only one party is corrupted, run the corresponding simulator in Figure 7.

• If the other party gets adaptively corrupted during the auth session, the simulator needs
to simulate an internal state for that party as well. The only place in the protocol where
parties maintain nontrivial state is that honest servers store the value r for the duration of an
auth session. The simulator description therefore includes a procedure on corrupt which
generates r if needed during that time interval.

10During an auth session, the ideal functionality gives various outputs only to corrupt parties. We assume that if
a party is adaptively corrupted during the execution of an auth session, then it receives this leakage from Fnew-auth

retroactively.

40

• Once both parties are corrupted, the simulator only needs to pass messages back and forth
between the two corrupted parties.

Corrupt client. We first consider the case of a client who is corrupt at the beginning of an auth
session. We show that the real and ideal interactions are indistinguishable, via a sequence of hybrid
interactions:

Real interaction: The adversary interacts with honest parties running the protocol, and Fpsi+.
When an adversary adaptively corrupts a party, it receives a history of their inputs from / outputs
to the environment, as well as their private internal state. The only case of a party holding private
internal state is an honest server holding state r during an auth session.

Hybrid 0: Same as the real interaction, except that whenever an honest party runs genkey, the
resulting pk is added to a set Secure. Whenever the adversary corrupts Pi’s storage, remove the
corresponding pk’s from Secure. Furthermore, whenever an honest party runs (sign, pk,m), add
(pk,m) to a set Σ. The adversary’s view in this hybrid is identical to the real interaction.

Of particular interest in this interaction:

• In every auth session with a corrupt PC and initially honest PS, c is generated honestly as
(c, r)← Enc(KS).

• In every auth session with a corrupt PC and initially honest PS, the client’s main output from
Fpsi+ is computed equivalently to the following:

for pk ∈ KS:
M∗[pk] = Msg(pk, r)

I := MC ∩ {⟨pk,M∗[pk]⟩ | pk ∈ KS}︸ ︷︷ ︸
MS

• Each time an honest party runs (verify, pk,m, σ), the result is computed using Verify(pk,m, σ).

• If the adversary adaptively corrupts the server during an auth session, the adversary gets to
learn the server’s internal state r.

Hybrid 1: Modify the previous hybrid so that the client’s Fpsi+ output is calculated as:

for pk ∈ KS:
M∗[pk] = Msg(pk, r)

I := MC ∩ {⟨pk,M∗[pk]⟩ | pk ∈ KS\Secure}

Additionally, each time an honest party runs (verify, pk,m, σ), the result is computed as:

if pk ∈ Secure and (pk,m) ̸∈ Σ: return false
else return Verify(pk,m, σ)

Below in Lemma 18 we show that hybrids 0 & 1 are indistinguishable, using a reduction to adap-
tive joint MKEMSS security. Intuitively, the hybrids are identical-until-bad, where the bad event
corresponds to an adversary guessing the decryption of an honest ciphertext under a secure key, or
forging a signature under a secure key. These are precisely the events that joint MKEMSS security
says happen with negligible probability.

Hybrid 2: Modify the previous hybrid so that the client’s Fpsi+ output is calculated as:

41

for pk ∈ KS \ Secure:
if pk unregistered:
M∗[pk] = Msg(pk, r)

if pk registered (to party Pi):
M∗[pk] = Dec(SKi[pk], c)

I := MC ∩ {⟨pk,M∗[pk]⟩ | pk ∈ KS \ Secure}

The only difference between the hybrids is how M∗[pk] is computed for an honestly generated key
— whether via Msg or Dec. The adversary’s view is identical in these two hybrids by the correctness
of the MKEMSS scheme.

Hybrid 3: Modify the previous hybrid as follows. Now c is generated as follows:

L = Leak(KS)
(c,M∗, view)← AnonSim(L,KS \ {pk | pk registered})

And the client’s Fpsi+ output is computed as follows:

// M∗ already initialized above

for pk ∈ KS \ Secure:
if pk registered (to party Pi):

M∗[pk] = Dec(SKi[pk], c)
I := MC ∩ {⟨pk,M∗[pk]⟩ | pk ∈ KS \ Secure}

If the adversary adaptively corrupts the honest server between sending c and contacting Fpsi+, then
the simulator computes r as follows:

r ← AnonView(view, {SKi[pk] | pk ∈ KS registered to Pi})

The two hybrids are indistinguishable by a straight-forward reduction to the MKEM anonymity
property.

Hybrid 4: In the previous hybrid, a pair ⟨pk,m⟩ can only be included in I if: (1) pk ̸∈ Secure.
Note that since PC is corrupt, pk ̸∈ Secure⇔ can use(PC, pk). (2) pk ∈ KS; (3) m = Dec(sk, c) for
the sk that corresponds to pk.

Modify the previous hybrid to compute the client’s Fpsi+ output I as follows:

// M∗ already initialized above

for all pk such that (pk, ·) ∈MC:
if pk registered (to party Pi):

M∗[pk] = Dec(SKi[pk], c)

K̃C = {pk | ⟨pk,M∗[pk]⟩ ∈MC}
U := {pk | can use(PC, pk)}
I := {⟨pk,M∗[pk]⟩ | pk ∈ KS ∩ K̃C ∩ U}

I is computed in a slightly different, but logically equivalent way, so the adversary’s view is identical
in the two hybrids.

Ideal interaction. We conclude the proof by observing that Hybrid 4 is identically distributed
to the ideal interaction involving the simulator. In particular:

• Server’s message c is generated via AnonSim using the leakage provided by Fnew-auth.

42

• If the adversary adaptively corrupts the honest server between sending c and contacting Fpsi+,
the adversary gets r that is computed using AnonView and the secret keys corresponding to
the public keys in KS.

• When the simulator obtains MC from the adversary, it computes K̃C and sends it to Fnew-auth.
The functionality responds with KS ∩ K̃C ∪ {pk | can use(PC, pk)}, and the simulator can
generate I as a function of this response.

• Whenever the adversary corrupts Pi’s key storage, the associated keys are removed from
Secure, corresponding to the simulator calling stealkeys.

Corrupt server. We first consider the case of a client who is corrupt at the beginning of an
auth session. We show that the real and ideal interactions are indistinguishable, via a sequence of
hybrid interactions:

Real interaction: The adversary interacts with honest parties running the protocol, and Fpsi+.
Notably, the honest client’s primary output (to the environment) from the auth-protocol is com-
puted by the following sequence:

// within honest client:

MC := {⟨pk,Dec(SKC[pk], c)⟩ | pk ∈ KC}
// within Fpsi+:

I := MC ∩MS

// within honest client:

output {pk | ∃m : ⟨pk,m⟩ ∈ I}

Hybrid 0: In the previous hybrid, a value pk is included in the honest client’s output iff: (1) pk
is registered to the client PC; (2) ⟨pk,Dec(sk, c)⟩ ∈MS, for the correct sk that corresponds with pk;
(3) pk ∈ KC. Hence, an equivalent way of computing Fpsi+ output A is as follows:

M∗ := empty
for each ⟨pk,m⟩ ∈MS:

if ∃i : SKi[pk] defined: M
∗[pk] := Dec(SKi[pk], c)

K̃S := {pk | ⟨pk,M∗[pk]⟩ ∈MS}
U := {pk | SKC[pk] defined} = {pk | can use(PC, pk)}

output KC ∩ K̃S ∩ U

The adversary’s view is identical in these two hybrids, since the only difference is a value being
computed in a different but logically equivalent way.

Ideal interaction. We conclude by simply observing that the previous hybrid exactly matches
what happens in the ideal interaction. In particular, the simulator upon seeing MS computes
M∗ and K̃S as above. Then after the simulator sends an auth2 command to Fnew-auth, it delivers
KC ∩ K̃S ∩ {pk | can use(PC, pk)} to the honest client.

Wrapping up. Overall, we have shown that the real and ideal worlds are indistinguishable.
To do so, we have invoked reductions to the MKEM anonymity and adaptive joint-MKEMSS
security properties. The anonymity property is used only for one hybrid, but in Lemma 18 the
adaptive joint-MKEMSS security property is used once for each honestly generated public key.
When we invoke adaptive joint-MKEMSS security, we do so with an MKEMSS adversary whose

43

concurrency is bounded by the maximum number of concurrent auth attempts involving that key
in our protocol. Applying Lemma 17, we see that such adaptive MKEMSS security reduces to
static MKEMSS security, with a multiplicative security loss equal to the concurrency. Combining
all of the losses from all hybrid steps finally yields the result and bounds from Theorem 14.

B.1 Supporting Lemma

Lemma 18. Hybrids 0 & 1 (in the case of initially corrupt client) are indistinguishable if MKEM
satisfies adaptive joint MKEMSS security (Section A.5).

Proof. In the terminology of code-based games [BR06], these two hybrids are equivalent-until-bad,
with the bad event being:

• A corrupt client has produced a value ⟨pk,Dec(sk, c)⟩ where c was honestly generated by an
honest server, (pk, sk) is honestly generated, and pk ∈ Secure at the time; or

• The adversary has produced a tuple (pk,m, σ) where Verify(pk,m, σ) = 1, pk was generated
honestly, pk ∈ Secure, and (pk,m) ̸∈ Σ meaning that the honest owner of pk has not yet
generated a signature on m.

Note that in the first case, the bad event in Hybrid 0 is defined with respect to computing the
client’s Fpsi+ output when the server is honest. A bad event is not possible (for a given auth
session) if the server is adaptively corrupted before the client receives Fpsi+ output.

The bad event always happens with respect to a public key pk, so we may consider the bad
event to be a union of bad sub-events, each with respect to a different pk (more specifically, with
respect to the ith honest keypair generated, for a specific i). The probability of the overall bad
event is the sum of probabilities of all bad sub-events. Hence, we focus on bounding the probability
that the above bad event happens with respect to a particular keypair, say the ith one.

The reduction to adaptive joint MKEMSS security is rather direct. The reduction algorithm
plays as an adversary in the MKEMSS security game. In that game, a challenge keypair (pk∗, sk∗)
is chosen. The reduction algorithm generates hybrid 0, except it treats the game’s challenge keypair
(pk∗, sk∗) as the ith honest keypair of hybrid 0, and it uses the game’s encrypt oracle to generate
all MKEM ciphertexts addressed to pk∗. As a result, the reduction algorithm does not know sk∗,
and it does not know the value r associated with ciphertexts addressed to pk∗. It must therefore
use the oracles provided in the MKEMSS to carry out operations involving these unknown values.

Hybrid 0 uses sk∗ only for the following:

• Generating signatures under sk∗.

• Computingm = Dec(sk∗, c) values for certain values of c (by an honest client). Thesem values
are ultimately used only to form ⟨pk,m⟩ tuples, where the m-components are compared for
equality with other strings.

• Totally revealing sk∗, when the simulator makes a corresponding call to stealkeys.

Hybrid 0 uses r values from ciphertexts only for the following:

• Computing m = Msg(pk, r) for certain pk values (by an honest server). As above, these m
values are ultimately used only to form ⟨pk,m⟩ tuples, where the m-components are compared
for equality with other strings.

• Revealing r completely (when an honest server is adaptively corrupted).

44

With the exception of totally revealing sk∗, each of these kinds of operations can be carried out
using the oracles of the MKEMSS game. Hence, the reduction algorithm can generate Hybrid 0
while in the role of an adversary in the MKEMSS game, with the MKEMSS challenge keypair
corresponding to the ith honest keypair in Hybrid 0, and ciphertexts addressed to pk∗ generated
by the MKEMSS encrypt oracle. The simulation of Hybrid 0 is exactly faithful, until a stealkeys
command means that sk∗ should be revealed. We let our reduction algorithm abort in this case.

It suffices to show now that the bad event in Hybrid 0 implies thewin condition in the MKEMSS
game, since thewin condition happens with negligible probability. First, observe that the bad event
with respect to pk∗ entails that pk∗ ∈ Secure. The reduction algorithm aborts only in the case where
pk∗ would be removed from Secure in Hybrid 0. In other words, the reduction algorithm aborts
only when the bad event becomes impossible in the future.

The bad event condition has two clauses. The clause involving forged signatures has a clearly
corresponding clause in the definition of the MKEMSS win condition. The other clause of the bad
event condition refers to an adversary generating a pair ⟨pk∗,Dec(sk∗, c)⟩ while c was addressed
to pk∗. In this case, c would have been generated by the MKEMSS encryptoracle, and a cor-
responding R[c] value would be defined. The pair (c,Dec(sk∗, c)) will satisfy the win condition
in MKEMSS, provided that R[c] remains defined in the MKEMSS game. R[c] becomes undefined
only when the adversary calls open(c). Our reduction algorithm only calls open(c) when an hon-
est server becomes adaptively corrupted and the adversary learns the corresponding r. But if the
server has already become adaptively corrupted, then the bad event cannot happen, according to
our previous understanding of bad events in Hybrid 0.

C PSI With Proof of Non-Empty Intersection

C.1 Möller Key Agreement

The RT21 protocol is defined in terms of a 2-message key agreement protocol, where the messages
may be sequential. In this work we present the PSI protocol in terms of a special case of key
agreement where the messages can be simultenous, since our suggested instantiation via Diffie-
Hellman has this property, and it simplifies some notation in the protocol.

Definition 19. KA is a key agreement (KA) if the following protocol satisfies correctness: Ka

must equal Kb, except with negligible probability.

a← KA.R
A := KA.msg1(a)

b← KA.R
B := KA.msg2(b)

Ka := KA.key1(a,B) Kb := KA.key2(b, A)

A

B

Definition 20. KA has non-malleable security if every PPT adversary A has negligible proba-
bility of winning the game:

45

a← KA.R
A := KA.msg1(a)
B := {}
msg():

b← KA.R
B := KA.msg2(b)
B := B ∪ {B}
return B

check(B,K):

return KA.msg1(a,B)
?
= K

(B,K)← Amsg,check(A)
win if B ∈ B ∧ KA.msg1(a,B)

?
= K

Definition 21. KA has pseudorandom responses if KA.msg2 is a PRG. Formally, the following
distributions are indistinguishable, for some integer s:

b← KA.R
B = KA.msg2(b)
return B

B ← {0, 1}s
return B

One of our improvements to the RT21 PSI protocol is to use a different choice of underlying key
agreement — namely, the elliptic-curve-based key agreement of Möller [Möl04]. We follow [MRR21]
in using Möller as a key agreement scheme with pseudorandom responses. Let E be a Montgomery
elliptic curve over a field FE with almost exactly 2s elements. Then E has a quadratic twist E′,
with the property that every x-coordinate either occurs twice in E, twice in E′, or once in each.
Therefore, |E|+ |E′| = 2(|FE |+ 1).

Möller’s idea was to use both E and E′ together, and send only the x-coordinate. This way,
every x-coordinate in FE is possible, and equally likely. Montgomery curves allow the efficient
computation of (Ba)x using only the x-coordinate (B)x. Let G0 ∈ E and G1 ∈ E′ be generators
of their respective elliptic curve groups. They should be generators of the whole groups, not just
prime order subgroups. Then Möller KA is defined as:

KA.msg1((a, ·)):
A0 := Ga

0

A1 := Ga
1

return (A0)x, (A1)x

KA.key1((a, ·), (B)x):

return (Ba)x

KA.R =
[
0,max(|G|, |G′|)

)
× {0, 1}

KA.msg2((b, c)):

B := Gb
c

return (B)x

KA.key2((b, c), ((A0)x, (A1)x)):

return (Ab
c)x

The first message, A, consists of a point on each of E and E′, while the second message B is
randomly selected to be on either E or E′. both parties can compute (Gab

c)x, where c indexes the
choice of curve made in the second KA message.

Similarly to [MRR21], we need a security assumption that is modified for the presence of two
elliptic curves. By analogy with the Strong Diffie–Hellman (SDH) assumption [ABR01], define:

Definition 22. The 2 Group Strong Diffie–Hellman (2G-SDH) assumption for G0 ∈ G0, G1 ∈
G1 states that it is computationally hard to find Gab

i from Ga
i and Gb

i for either i, even with an
oracle for checking guesses of Xa for all X ∈ G0∪G1. More precisely, every PPT adversary A has
negligible probability to win the game:

46

a, b0, b1 ←
[
0,max(|G0|, |G1|)

)
guess(X ∈ G0 ∪G1, Y ∈ G0 ∪G1):

return Xa ?
= Y

Z := Aguess(·)(Ga
0, G

a
1, G

b0
0 , Gb1

1)

win if Z
?
= Gab0

0 ∨ Z
?
= Gab1

1

Lemma 23. Möller KA has non-malleable security under the 2G-SDH assumption. And it has
pseudorandom responses if the relative distance from |FE | to a power of 2 is negligible.

Proof. Let A be an adversary against the non-malleable security of KA. We construct a new adver-
sary A′ against the 2G-SDH assumption. Given a challenge (A0, A1, B0, B1) = (Ga

0, G
a
1, G

b0
0 , Gb1

1),
A′ sets A = (A0, A1) and runs A(A). The msg and check oracles are simulated as:

R := empty map
msg():

c← {0, 1}
b←

[
0, |Gc|

)
B := BcG

b
c

R[(B)x] := (c, b, B)
return (B)x

check((B)x, (K)x):

find X where (X)x = (B)x
find Y where (Y)x = (K)x

return

(
guess(X,Y)

∨ guess(X,Y −1)

)

msg works by rerandomizing Bc to get uniformly random elements of the group Gc. While the
exponent b is chosen from possibly a smaller set than in the key agreement, the difference is

negligible because max(|G0|,|G1|)
min(|G0|,|G1|) = 1 +O(F−1/2

E) by the Hasse bound.
The check oracle is simulated with a complication. It is given only the x-coordinates of curve

points, whereas the 2G-SDH guess oracle expects full curve points as arguments. However, the two
points with the same x-coordinates are always a pair of the form X,X−1. Hence, our simulation of
check finds any curve point with the given x-coordinate, and queries its guess oracle twice to get

PS on input (input, (PS, PC, ssid),MS) PC in input (input, (PS, PC, ssid),MC)

a← KA.R
A := KA.msg1(a)

P, {bm}m∈MC
← BuildPoly(MC)

output deg(P) + 1 (= |MC|)
h,K, s← GenChallenge(a, P,MS)
// a can now be erased

I :=
{
m ∈MC | Response(A,m, bm, h,K) ̸ ?= ⊥

}
output |K| (= |MS|) and I
await command (deliver, ssid, d ∈ {0, 1})
s′ := 0
if d ∧ ∃m ∈ I:
s′ := Response(A,m, bm, h,K)

output s
?
= s′

A

P

h,K

s′

Figure 8: Our PSI protocol. Subroutines GenChallenge, BuildPoly, and Response are defined in Figure 9.

47

GenChallenge(a, P,MS):

s← {0, 1}λ
h := Hash(s)
K := empty map
for m ∈MS:
Bm := E−1(m,P (H(m)))
km := H ′(m,KA.key1(a,Bm))
K[km,1] := s⊕ km,2

return h,K, s

BuildPoly(A,MC):

S := {}
for m ∈MC:
bm ← KA.R
Bm := KA.msg2(b)
S := S ∪ {(H(m), E(m,Bm))}

P := interpolF(S)
return P, {bm}m∈MC

Response(A,m, b, h,K):

km := H ′(m,KA.key2(b, A))
s′ := K[km,1]⊕ km,2

if h ̸ ?= Hash(s′):
return ⊥

return s′

Figure 9: Subroutines of our PSI protocol (Figure 8).

the correct answer. Therefore, A has the same view as it would when running in the non-malleable
security game.

When A outputs a decryption guess (B)x, (K)x that would win the non-malleable security game,
fetch (c, b, B) = R[(B)x]. Similarly to check, solve for Y with x-coordinate (K)x and check which
of (B, Y) and (B, Y −1) is a valid decryption pair. Assume w.l.o.g. that this pair is (B, Y). Then
Y A−b

c = Ba
c solves the 2G-SDH problem.

For pseudorandom responses, notice that picking a uniformly random x-coordinate corresponds
to picking a uniformly random pair B,B−1 of points, either on the curve or the twist. The only
difference is that the choice of curve vs twist will be weighted according to the number of points
on each. However, the fraction of x-coordinates on the main curve (relative to the number of x-
coordinates in FE) is negligibly close to 1

2 , by the Hasse bound. Therefore, generating a uniformly
random x-coordinate is indistinguishable from the output of KA.msg2. Finally, a uniformly random
element of FE has an almost uniformly random bit representation, with statistical distance at most
||FE |−2s|

2s , where s is the closest power of 2 to |FE |.

C.2 Protocol

Our protocol for PSI with proof of non-empty intersection is given in Figure 8. It is based on the
maliciously secure PSI of Rosulek and Trieu [RT21]. The protocol requires several cryptographic
primitives. First, we need a key agreement that has non-malleable security and pseudorandom
responses. We also use two local random oracles, H and H ′, and a local ideal cipher E,11 where

H : {0, 1}∗ → {0, 1}s

H ′ : {0, 1}∗ × {0, 1}s → {0, 1}2λ

E± : {0, 1}∗ × {0, 1}s → {0, 1}s.
11RT21 is proven secure using an ideal permutation rather than ideal cipher. However, like the random oracle

model, an ideal permutation is assumed to be local to each protocol interaction. In other words, the local ideal
permutation model is equivalent to a collection of independent permutations, indexed by the session id. This is not
substantively different from the ideal cipher model, treating the session id as the cipher key. Hence, we choose to
describe the protocol here using an ideal cipher, since it has the additional property of improving some aspects of
the security bound.

48

a← KA.R
A := KA.msg1(a)
on corrupt(MS):

PS: give MS and a to the adversary
PS: send A to PC

PS: receive P from PC

MC := {}
for past IC queries y = E(m,x):

if y
?
= P (H(m)):

MC := MC ∪ {m}
while |MC| < deg(P) + 1: // pad MC with dummies

m← {0, 1}2λ
MC := MC ∪ {m}

PC: send (input, (PS, PC, ssid),MC) to Fpsi+

PC: receive (I, |MS|) from Fpsi+

h,K, s← GenChallenge(a, P, I)
while |K| < |MS|: // pad K with dummies

k ← {0, 1}2λ
K[k1] := s⊕ k2

on corrupt(MS):

PS: give MS, h,K, s to the adversary // a was erased

PS: send h,K to PC

PS: receive s′ from PC

PC: send (deliver, ssid, s
?
= s′) to Fpsi+

(a) Corrupt client and honest server.

PS: receive |MC| from Fnew-auth

P ← F[x] with degree less than |MC|
b← KA.R{0,1}∗

program E−1(m, y):

if y
?
= P (H(m)):

return KA.msg2(b(m))
on corrupt(MC):

bm := b(m),∀m ∈MC

PC: give MC and {bm}m∈MC
to the adversary

PC: send P to PS

PC: receive h,K from PS

MS :=

{
m

∣∣∣∣ adversary queried H ′(m, ·)
∧ Response(A,m, bm, h,K) ̸ ?= ⊥

}
while |MS| < |K|: // pad MS with dummies

m← {0, 1}2λ
MS := MS ∪ {m}

PS: send (input, (PS, PC, ssid),MS) to Fpsi+

PS: receive nonempty from Fpsi+

if nonempty ∧ ∃m ∈ I:
PC: send Response(A,m, bm, h,K) to PS

else:
PC: send 0 to PS

(b) Corrupt server and honest client.

Figure 10: Simulators for adaptive security of Figure 8. The simulator plays a number of roles in the
protocol, so each action is annotated by who the simulator is pretending to be when it takes the action.

Strictly speaking, the ssid should be passed into all three of these, but we omit this for clarity.
The plaintexts and ciphertexts of the idea cipher E are assumed to be in a field F, which needs to
have order very close to 2s. We ignore the difference between {0, 1}s and F, as they are assumed
to be negligibly different. Finally, we need a collision resistant hash function Hash.

In the protocol we use the notation x1, x2 to denote the two halves of a string x (e.g., km,1 and
km,2 are the two halves of km).

Because we target adaptive security for our protocol, we must be careful that parties erase
information from their internal state after it is no longer needed. This becomes important for the
case of the value a held by the server.

Note that it would be possible to save a round in our protocol, as sending A could be delayed to
go at the same time as h and K. However, we keep the four rounds because it makes no difference
to the overall round complexity in the context of our authentication protocol, since A would be
sent at the same as sending the MKEM ciphertext. It also allows a small optimization, where the
client can compute KA.key2(bm, A) for all m ∈MC while it is waiting for the server to send K.

Instantiations and Implementation Notes: Following [MRR21], our implementation uses
curve25519 as its elliptic curve, which is highly suitable for use in Möller KA. It was designed
explicitly to have a secure twist, as well as being secure itself, and its field size 2255−19 is extremely

49

close to a power of 2. The polynomial interpolation field F was chosen to be the first prime bigger
than 2256. This difference of one bit between the KA message size and the polynomial size is
bridged by concatenating an extra random bit on the end. The hash functions are SHA256, and
the ideal cipher is instantiated as Rijndael256(SHA256(m), x), using the 256 bit block size and key
size variant of the cipher that was standardized as AES.

The table K sent from the server to the client is represented as a sorted list of tuples, to avoid
leaking their order. We used a Batcher odd-even sorting network [Bat68] to prevent any timing
attacks on this step. The client verifies that K is sorted, and that there are no duplicates.

C.2.1 Security Proof

The security proof follows essentially that of [RT21]. However, they prove only static security for
the protocol, whereas we prove adaptive security. Our proof requires the simulator to provide a
simulated internal state when a party is corrupted during the protocol execution. This turns out
to be rather straight-forward, thanks in part to some careful planning about when parties erase
information from their state.

Theorem 15. The protocol in Figure 8 UC-securely realizes the Fpsi+ functionality (Figure 3)
against adaptive adversaries, in the ideal cipher + random oracle model, if KA has non-malleable
security (Definition 20) and pseudorandom responses (Definition 21).

Proof. As in our proof of Theorem 14, if neither party is initially corrupt, then there is nothing
to simulate until one party becomes corrupt. When the first party is corrupted, the simulator can
simply run the corresponding simulator from the beginning (as if the party had been semi-honestly
corrupt the whole time) until the appropriate point. When the second party becomes corrupt, the
simulator must generate an internal state for the newly corrupted party, but after that point there
is nothing to simulate.

The formal description of the simlator is given in Figure 10. There are two cases depending on
which party is corrupt at the beginning of the protocol execution. At various points throughout the
simulator description, it defines a procedure on corrupt. If the honest party becomes corrupted
during the protocol execution, the simulator will execute the most recently defined on corrupt
procedure to generate that party’s simulated internal state.

Without loss of generality, we assume that the ideal oracles are never queried if the answer
to that query has already been determined previously in the interaction. This includes repeated
queries to the random oracles and ideal cipher, and also forward ideal cipher queries where the
corresponding backwards query was already made (or vice-versa).

Corrupt client. We consider now the case of an initially corrupt client.

Hybrid 1: Same as the real interaction, except that we log all queries to H ′ and the ideal cipher
E. After receiving polynomial P from the corrupt client, we abort if there is ever a query of the
form H ′(m,KA.key1(a,E

−1(m,P (H(m))))), made before the honest server would erase a, and there
was no previous ideal cipher query E(m,x)→ P (H(m)).

It suffices to show that the probability of aborting is negligible. We do so via the following
reduction to the scheme’s non-malleability:

We construct a reduction algorithm which plays in the non-malleability security game,
and hence has access to msg and check oracles. The reduction runs the real protocol
interaction, along with the adversary, but instead of choosing a itself, it defines a im-
plicitly as the value chosen in the non-malleability game. If the server is corrupted and
the simulator would have to reveal a to the adversary, then abort.

50

The reduction algorithm further programs the responses to every ideal cipher query
E−1(m, y) to be a fresh response from calling its msg oracle. This causes the output of
E−1(m, y) to be added to the game’s set B. Since the KA has pseudorandom responses,
the protocol messages generated by msg are indistinguishable from random, and the
adversary’s view in this reduction is indistinguishable from its real-world view.

When the reduction algorithm needs to simulate the honest server’s computation of
values of the form H ′(m,KA.key1(a,Bm)), the reduction algorithm cannot compute this
directly because it does not have a. So instead, it samples a random value rm and
pretends that rm is the appropriate response from H ′. This change will not have any
effect on the adversary’s view if we can arrange to program H ′ to output rm on this
value. This can be arranged using the check oracle. Namely, when any party makes
a query H ′(m, z), and check(Bm, z) = 1, this means that z indeed is the correct KA
key KA.key1(a,Bm), so we can program the output to be rm.

Now, Hybrid 1 artificially aborts upon seeing a query of the formH ′(m, z = KA.key1(a, x)),
where x = E−1(m,P (H(m))) but there was never a prior corresponding query to
E(m,x). That query to E could only be absent if there was a prior query of the
form E−1(m,P (H(m))) → x. But then, x was added to the game’s set B and yet
check(x, z) = 1. Hence, the pair (x, z) wins the non-malleability game for the reduc-
tion algorithm.

From this we conclude that Hybrid 1’s artificial abort happens with negligible proba-
bility.

Hybrid 2: Same as the previous hybrid, except that when the simulator receives polynomial P
from the corrupt client, we compute the set MC exactly as the simulator does (without padding
with dummy items). Later, when the honest server runs GenChallenge, it should compute km =
H ′(m,KA.key1(a,Bm)) values. We modify this hybrid so that whenever m /∈ MC, it samples
km ← {0, 1}2λ instead. However, if the server gets compromised before erasing a, pretend this
modification didn’t happen by going back and recomputing the km correctly.

If the server is compromised before a is erased, then the adversary’s view is not affected by this
change. Otherwise, we have replaced H ′(m,KA.key1(a,Bm)) with a random value, so the change
is indistinguishable unless the adversary queries H ′ at this point. However, since m ̸∈ MC, such
a query would trigger the bad event causing the interaction to abort. This can only happen with
negligible probability, so the two hybrids are indistinguishable.

Hybrid 3: Pad MC with dummy elements until its size is deg(P) + 1, as in the simulator.
These dummy elements have negligible probability of colliding with any values that the interaction
checks for membership in MC, so this change is indistinguishable. This modification assumes that
|MC| ≤ deg(P)+1, but we can show that this condition is violated only with negligible probability,
by reducing to what we call the Random Polynomial Reconstruction assumption (Definition 24).

We appeal to that assumption using the uniformly random set of points (H(m), E(m,x)), over
all ideal cipher queries E(m,x). For |MC| to be too large, P would have to go through more than
deg(P) + 1 of them, which violate the assumption.

Hybrid 4: Same as the previous hybrid, except abort if s′ = s and yet MS ∩MC = ∅. This
event happens with negligible probability because: (1) When MS ∩MC = ∅, every km value chosen
in this hybrid is uniformly random. The km values then act as one-time pads to completely hide s
from the adversary’s view. (2) Without any information on s except for h = Hash(s), computing s
is equivalent to breaking the preimage security of Hash.

51

Ideal world: In the previous hybrid, each item in MS \MC contributes uniformly random values
to the map K. Besides that, these items are not used anywhere. In other words, the distribution
generated by the previous hybrid can be generated knowing only I = MS∩MC, and |MS|. From this
we can see that the previous hybrid differs from the ideal interaction only in the artificial aborts.
Since the artificial aborts have negligible probability, the previous hybrid is indistinguishable from
the ideal interaction.

Corrupt server. We now consider the case where the server is corrupt when the protocol begins.

Hybrid 1: Same as the real interaction, except for the following modifications: Instead of
sampling bm values explicitly, the honest server should lazily sample a random oracle b← KA.R{0,1}∗

and set bm = b(m). This change clearly does not affect the distribution of any values in the
interaction, but will become convenient later.

Additionally, generate the polynomial P in “reverse order.” That is, first sample a uni-
formly random polynomial P with degree less than |MC|. Then program the ideal cipher so that
E−1(m,P (H(m))) = KA.msg2(b(m)). These points on the ideal cipher have negligible probability
of interfering with any existing queries, because P is freshly random, and so P (H(m)) is random
for any m that was previously queried. We now have P (H(m)) = E(m,KA.msg2(bm)) for m ∈MC,
so P is still the interpolation of the same set as before.

If the KA.msg2(b(m)) values were uniformly distributed (and there are no collisions in H leading
to a contradictory set of points for interpolation), then we would achieve the same distribution by
generating P in the normal way or in this reverse order. Since KA.msg2(b(m)) values are merely
pseudorandom, this hybrid is merely indistinguishable from the real interaction.

Hybrid 2: Same as the previous hybrid, except remove from the honest client’s set I anym where
the adversary has not previously queried H ′(m, ·). Recall that m is included in the intersection
if (among other things) the first half of H ′(m,KA.key2(b, A)) exists as a key in the map K sent
by the adversary. If this query to H ′(m, ·) is a fresh one, then this event happens with negligible
probability. Hence, the probability of removing an item from I in this hybrid is negligible, and this
hybrid is indisinguishable from the previous one.

As a result of this change, we can rewrite the client’s computation of I as follows. First compute
MS as in the simulator (but without padding with dummy items) — i.e., the set of all m’s for which
the adversary previously made a queryH ′(m, ·) and for which Response(A,m, b(m), h,K) = 1. Then
set I = MS ∩MC.

Hybrid 3: Pad MS with random dummy elements until it has the same cardinality as K, just
like in the simulator’s description. These dummy elements have negligible probability of colliding
with anything else, so the change is indistinguishable.

This change assumes that |MS| ≤ |K|, which is true with all but negligible probability because
otherwise there must be a hash collision. By the pigeonhole principle, if |MS| > |K| then there must
be m ̸= m′ ∈ MS such that m and m′ both reference the same entry in K, so km,1 = km′,1. Then
either km,2 = km′,2, implying a full collision in H ′, or s = K[km,1] ⊕ km,2 ̸= K[km′,1] ⊕ km′,2 = s′

and Hash(s) = Hash(s′) = h.

Ideal interaction. In the previous hybrid, the only place MC is used is to compute the honest
client’s intersection, as I = MC∩MS. Thus, the hybrid proceeds identically to the ideal interaction,
the only difference being “repackaging” of which computational steps happen in which parts of the
interation (i.e., simulator, honest client, ideal functionality).

Definition 24. The Random Polynomial Reconstruction (RPR) assumption states all
PPT adversaries A win the following game with at most negligible probability, for all (polynomial)
n.

52

for i := 1 to n:
xi, yi ← F

P ← A({xi}i, {yi}i)
win if |{i |P (xi) = yi}| > deg(P) + 1

Justification: The standard polynomial reconstruction problem for parameters n, k, t is to find a
polynomial P with deg(P) < k that goes through at least t of n given points (xi, yi). Cryptosystems
[KY07] have been constructed from a related decision problem. The points are chosen by picking a
random polynomial P , evaluating it at n places, then replacing n− t of the resulting y-coordinates
with uniform randomness. Thus, the distribution guarantees that a solution exists by constructing
the problem around such a solution. Our RPR assumption is particularly difficult in this regard,
as the points are not chosen to make the problem solvable, having no structure whatsoever.

As far as parameter selection goes, [KY07] consider two attacks as being important. The first,
Guruswami–Sudan list decoding [GS98], fails when t <

√
kn. In our case, n ≥ t = k + 1 ≥ 2, with

k = deg(P) + 1 selected by the adversary. For the list decoding algorithm to work,

t ≥
√

(t− 1)n

t2

t− 1
≥ n

t+ 1 +
1

t− 1
≥ n

t+ 1 ≥ n,

using that t and n are both integers. By a union bound, the existence of a solution P has probability
at most

(
n
t

)
/|F|, since any choice of t points gives an interpolation polynomial that is a solution if

and only if its highest degree coefficient is zero. Since all the points are random, the coefficients
will be random as well, so for each set of t points the probability is |F|−1. If n = t+ 1, a solution
exists with probability at most n/|F|, which is negligible (and much smaller than 2−λ for our choice
of F).

The other attack considered was a simple brute force attack: try the
(
n
t

)
possible choice of

t to interpolate a polynomial through, and check if it has degree t − 2. As in the above union
bound, each guess has probability at most |F|−1, so this attack is also infeasible. Finally, for small
t there may be special algorithms, as, e.g., t = 2 corresponds to just searching for a collision. To
cover these attacks, we conjecture that adversaries with time complexity T can break RPR with
probability at most O(T 2/|F|).

[RT21] also gave a statistical bound for attacking a similar game, where the adversary has to
interpret the polynomial through more than just one extra point. Using a bound similar to the
union bound we gave above, they show that exceeding O(n) extra interpolation points has negligible
probability, even for unbounded adversaries.

53

	Introduction
	Privacy Attacks Against SSH Authentication
	Problem Statement and Goal
	Existing Mitigations and Their Limitations
	Our Contributions
	Other Related Work

	Preliminaries
	Signatures

	Anonymous Multi-KEM
	Joint Security
	Instantiations
	EdDSA
	ECDSA
	RSA
	Mixing Key Flavors

	Security Definition
	Main Protocol
	Security Proof

	PSI variant
	Implementation and Evaluations
	Experimental Setup
	Evaluation Results

	Discussions
	Security Proofs for Multi-KEMS
	EdDSA
	ECDSA
	RSA
	Mixed-flavor KEM
	Adaptive Security

	Proof of Main Protocol
	Supporting Lemma

	PSI With Proof of Non-Empty Intersection
	Möller Key Agreement
	Protocol
	Security Proof

