INFORMATION SECURITY CENTER

Safeguardin

ing Digital Infomatio n Through Innovactive Research and Education

Mactans: Injecting Malware into iOS
Devices via Malicious Chargers

Billy Lau
Yeongjin Jang

Chengyu Song

Agenda

* 10S Security
* Mactans
 Discussion

| Georgiallnsiituie
’ off Technology

=

|OS SECURITY

Apple App Store

 The walled garden model
— Acts as platform to publish apps

* The only place to purchase/download apps

— Completely controlled by Apple

* All apps must be reviewed by Apple before release

* Areleased app can be removed from the store if it
violates policy

J“\ Georgialhstituie
yi «‘ off Technoelogyy 4

Code Sighing in iOS

* Enforces the integrity of the boot chain and
walled garden model

— Only correctly signed apps can be installed and
executed

* Signing Entities
— Apple App Store
— iOS developers

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

App Review

* Attempts to determine whether the submitted
app complies with the rules

e What are the rules?

— Largely empirical

* Apps that make use of private APIls are rejected and
banned

— Changing regularly
 What happens during app review?
— Static analysis and some manual testing (we think)
Georgialnstitutie

’ off Technology

=

I0OS Sandbox

* Process isolation

— A sandboxed process cannot read other processes’
memory

— Also cannot talk to other processes using traditional IPC-
like APIs

* Filesystem isolation

— Sandboxed app can only read/write to its own filesystem
e Can also read (but not write to) some public files

e Entitlement check

— For some operations (e.g., change passcode), iOS enforces
app Entitlements

|

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Walled Garden Effectiveness

* The walled garden model is assumed to be
secure

— All apps are carefully vetted prior to release and
thus safe

* Right?

e Compared to Android, almost no in-the-wild
malware instances for iOS

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

a step-by-step introduction to

MACTANS

Mactans Concept

* Not a jailbreak
— Does not require a jailbroken device

* Automatic
— Simply connecting the device is enough

e Stealthy

— There are no visible clues

* Powerful
— Does malicious things other apps cannot do

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
|| ofTechnology

=

I——

Anatomy of a Mactans Charger

Georgialnstitute
off Technology

11

Form Factor Alternatives

e Could be much smaller...

4-

J“\ Georgialhstituie
M off Technology

12

Mactans Overview

Obtain device UDID
Pair with device
Generate and install provisioning profile

= W N e

Install malicious app

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
|| ofTechnology

=

Universal Device Identifier (UDID)

* A 40 digit hexadecimal identifier unique to a
device

* Obtaining device UDID is trivial via USB
connection

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Pair With Device

* Once an iOS device is connected via USB,
Mactans will try to pair with it

* Mactans leverages a conceptual iOS pairing trust
assumption

— Device cannot reject pairing request

— Device can be paired without user’s consent while it is
passcode-unlocked

* Pairing can occur if device is unlocked at any time (even
briefly)

— Once paired, exploitation is possible regardless of
whether or not device is locked

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Pair With Device Cont’d

 Many operations can be performed via USB

— Obtain device information (e.g., UDID, serial
number)

— Install and remove apps and provisioning profiles
— Backup and restore, firmware reset (ipsw)
— Debugging

 Mactans can be used to perform these
functions

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Provisioning Profile Details

* Types of provisioning profiles
— Individual

— Enterprise

* Requirements for Individual profile

— Active developer’s license
— Device UDID

— Internet connection

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Provisioning Profile Details Cont’d

* Allows devices to run apps
signed by a non-Apple entity
— Provisioning profile must be

m Yeongjin's Ad-hoc Distr... >

Slgned by Apple ‘%)y“ Expires on Oct 30, 2013
* For enterprises to distribute in- FZ 105 Team Provisioning...
house apps ‘%)y Expires on Apr 1, 2014
* For individual devglopers to EZT DistributionProfile X
perform beta testing TR -, hires on Oct 31, 2013
— Provisioning profile must
match device and app
| Georgialnstiiute 19

H off Technology

=

Provisioning Profile Details

* A device must be registered to run a
developer’s app

— Individual developer license allows up to 100
devices
e Cannot remove devices once registered
— UDID registration via developer.apple.com

You can register 96 additional devices.

: Name UDID

Bllly's GTISC iPhone 5 53b9

Gtisc's iPad 13ec

| Georgialnstitute Yeong Jin's iPhone 5 3206

y off Technology

=

Generating a Provisioning Profile

* A Mactans charger must add a UDID to a
provisioning profile over the Internet

— How?
e Use available Internet connection

— A Mactans charger has a built-in Wi-Fi antenna

— Can also be equipped with SIM card module for
cellular data connection

* Creation via Apple’s website is fully automatable
— Submit UDID, check for and receive generated profile

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Generating a Provisioning Profile

Adding devices to team provisioning profile

A

46
-

21

| need to add a device to my team provisioning profile, however | do not physically have the device so | can't
hook it up to my computer so Xcode can't add the UDID to my devices and to the team provisioning profile. Is
there a way to add it manually to the team provisioning profile, | can't figure out how to edit it. Also when | add the
device in my provisioning portal it doesn't get added to my team provisioning profile automatically.

iphone | provisioning

Per May 16th 2013, using XCode 4.6.2, | had to do the following to add a device (which | do not have physical
access to) to the team provisioning profile:

Login to the provisioning portal through developer.apple.com

Add the UDID in Devices

Select the Team Provisioning profile in Provisioning Profiles

Click the Edit button

And under devices for that provisioning profile, click Select All, or just the devices you want included.
Click Generate

ook wwN =~

* Can be easily automated by browser automation tools
— No CAPTCHA

|

| Georgialnstitute -

’ ‘ off Technology

Installing an App

* Once obtained, a provisioning profile can be
installed without user’s consent (or knowledge)

— Apps owned by provisioning profile owner can then be
installed via USB

* After profile installation, arbitrary apps can be
installed and executed

* Next steps

— Hide app to prevent unwanted deletion

— Circumvent app runtime restrictions (i.e., via misuse
of private APIs)

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Hiding an App

 There are some hidden apps on the stock iPhone
— [Applications/DemoApp.app
— [Applications/FieldTest.app

* Info.plist for these apps reveals a common field

<key>SBAppTags</key>
<array>

<string>hidden</string>
</array>

* This property hides the app on the main screen and in
the task manager

| Georgialnsiituie
",‘H»‘ off Technology

=

Hidden App Capabilities

* iOS background execution
— App can run without user’s knowledge
— iOS limits background execution to 10 minutes

— Limit can be extended by several methods
e Terminate and restart before 10 minute deadline
* Register as VolP app and setKeepAliveTimeout:600

— With these methods, app can effectively run
indefinitely

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Hidden App Capabilities Cont’d

* Example: Taking screen shots

— Using a Private API call, a
background app can take a
screenshot of current

‘foreground’ screen
+ (UIImage *)captureCurrentDisplayAsImage Eaaﬂamm
{ fzlx]c]v]s[nfull

void* surface = [UIWindow createScreenIOSurface]; return

Apple ID Password
root@blue9057.com

UIImage *surfaceImage = [[UIImage alloc] _initWithIOSurface:surface
scale:[UIScreen mainScreen].scale orientation:UIImageOrientationUp];
CFRelease(surface);

return surfaceImage;

}

|
|

J“‘\ Georgialhstituie
yi ‘ off Technoelogyy 25

=

Hidden App Capabilities Cont’d

* Example: Simulating screen/button presses
— Xcode instrumentation
* App testing can be automated

— Simulation can also be done outside Xcode

(void)clickMenu;

— 1 (void)holdMenu: (double)argl;
DeveloperDisk
(void)clickLock;
. (id)holdLock: (double) 1;
e Has UIAutomation.framework - (o icvetimeon; o

(void)holdVolumeUp: (double)argl;
(void)clickVolumeDown;

(void)holdVolumeDown: (double)argl;
(void)setRinger: (BOOL)argl;

(void)shake;

(void)touchDown: (struct CGPoint)argl;

(void) liftUp: (struct CGPoint)argl;
(void)_moveLastTouchPoint: (struct CGPoint)argl;
(void)sendTap: (struct CGPoint)argl;

- (void)sendDoubleTap: (struct CGPoint)argl;

- (void)sendDoubleFingerTap: (struct CGPoint)argl;

* Try dlopen(), call APIs there

|
[

| Georgialnsitiute
|| ofTechnology 26

=

10S Trojan Horse

* Surreptitiously replace existing app with Trojan
— Obtain a set of original apps (Facebook, Skype)

— Repackage apps with Info.plist that has SBAppTags/
hidden property
— Sign app and Info.plist with attacker-owned developer
key and load onto Mactans charger
— After pairing
* Replace original app with repackaged, hidden version

* Install new, malicious app with icon of replaced app

 When launched, new app performs malicious actions, then
executes repackaged (hidden) app

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Trojan Horse Workflow

wi. Sprint & 11:04 PM

u__Sprint & 11:03 PM ai_Sprint & 11:04 PM

facebook

Logged in as blue9057@gmail.com

(Not You?)

Sign Up for Facebook

Main Screen Shows Trojan User Launches Trojan Trojan Launches Real,

Hidden App
Georgialnstitutie
o Techmnelogyy 28

Attack Scenarios

* General
— Use enterprise provisioning profile to setup public
charging stations (e.g., at airports, libraries)
* Targeted
— Exchange or provide charger to target

— Use a priori knowledge to selectively modify
environment (e.g., specific airplane seat, hotel
room)

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

DISCUSSION

Problem #1

* |Incorrect trust model for pairing

— Any host is implicitly trusted if the phone is not
passcode protected

— Once pairing is established, it is permanent

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Fix for Problem #1

e Use explicit authorization
— Coming to i0OS 7

¢ Tr U Ste d h O St m a n a ge m e nt Trust the currently connected

computer?

Trusting this computer will allow it full

- SynOnymOUS With Wi_Fi access to your device and all of its
data.
management

Trust Don't trust

ﬁ
| Georgialnsiituie
M ofTechnoelogyy

32

Problem #2

* No visual cues to differentiate a charger versus
a computing device

— iOS only has an indicator for synchronization, and
only shows that indicator during synchronization

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Fix for Problem #2

e Visual indicator to differentiate charge mode
and pair mode

— Fix for Problem #1 also fixes this problem

— Android generates a notification when the phone
is connected to a host and always shows the
indicator

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Problem #3

* Provisioning profile abuse

— Apple pays lots of attention to app signing, but
little attention to provisioning profile signing

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Fix for Problem #3

* Add procedures to prevent provisioning profile
generation

— Use CAPTCHA

— Implement mechanisms to detect suspicious
developer activity

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Problem #4

* Over-privileged default capabilities for USB

— Obtain device information (e.g., UDID, serial
number)

— Install and remove apps and provisioning profiles
— Backup and restore, firmware reset (ipsw)
— Debugging

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Fix for Problem #4

* Tighten default USB connection settings
— Reduce default connection mode privileges

— Require explicit authorization for provisioning
profile installation

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Problem #5

e Third party hidden apps considered harmful
— Few or no legitimate uses

— High abuse potential

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Fix for Problem #5

* Restrict the ability to set hidden property

— Only allow apps developed by Apple to use this
property

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

One more thing ...

* You do not need a malicious charger to bypass
the protections of the walled garden model

— Jekyll on i0S: When Benign Apps Become Evil.
Tielei Wang, Kangjie Lu, Long Lu, Simon Chung,
and Wenke Lee, Georgia Institute of Technology.

— To appear in proceedings of the 2013 USENIX
Security Conference, August 14-16, 2013.

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Please fill out your
feedback forms.

Questions?

