
HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim† Dae R. Jeong‡ Chung Hwan Kim¶ Yeongjin Jang§ Insik Shin‡ Byoungyoung Lee∗†

†Purdue University ‡KAIST ¶NEC Laboratories America
§Oregon State University ∗Seoul National University

†kim1798@purdue.edu ‡{dae.r.jeong, insik.shin}@kaist.ac.kr ¶chungkim@nec-labs.com
§yeongjin.jang@oregonstate.edu ∗byoungyoung@snu.ac.kr

Abstract—Hybrid fuzzing, combining symbolic execution and
fuzzing, is a promising approach for vulnerability discovery
because each approach can complement the other. However,
we observe that applying hybrid fuzzing to kernel testing is
challenging because the following unique characteristics of the
kernel make a naive adoption of hybrid fuzzing inefficient:
1) having indirect control transfers determined by system call
arguments, 2) controlling and matching internal system state via
system calls, and 3) inferring nested argument type for invoking
system calls. Failure to handling such challenges will render both
fuzzing and symbolic execution inefficient, and thereby, will result
in an inefficient hybrid fuzzing. Although these challenges are
essential to both fuzzing and symbolic execution, to the best of
our knowledge, existing kernel testing approaches either naively
use each technique separately without handling such challenges
or imprecisely handle a part of challenges only by static analysis.

To this end, this paper proposes HFL, which not only
combines fuzzing with symbolic execution for hybrid fuzzing
but also addresses kernel-specific fuzzing challenges via three
distinct features: 1) converting indirect control transfers to direct
transfers, 2) inferring system call sequence to build a consistent
system state, and 3) identifying nested arguments types of system
calls. As a result, HFL found 24 previously unknown vulnera-
bilities in recent Linux kernels. Additionally, HFL achieves 15%
and 26% higher code coverage than Moonshine and Syzkaller,
respectively, and over kAFL/S2E/TriforceAFL, achieving even
four times better coverage, using the same amount of resources
(CPU, time, etc.). Regarding vulnerability discovery performance,
HFL found 13 known vulnerabilities more than three times faster
than Syzkaller.

I. INTRODUCTION

Fuzzing and symbolic execution are two representative
program testing techniques for vulnerability discovery. Fuzzing
generates a random input to test the target program (or kernel) in
hopes that such a random input triggers a corner case exhibiting
a vulnerability [21, 46, 52]. Often augmented with a coverage-
guided feature, random fuzz testings such as [21] have been
shown its effectiveness in finding vulnerabilities in a vast
number of complex real-world applications. However, such
random testing is limited in handling a tight branch condition

because generating an input to explore such a branch requires
guessing a single value out of a huge search space [30, 36, 38].

On the other hand, symbolic execution takes a deterministic
and complete testing approach [9, 13], unlike fuzzing which
relies on a random approach. In particular, symbolic execution
takes all input to the target program as symbols and keeps track-
ing the program’s execution context as symbolic expressions.
By interpreting an execution as a set of symbolic constraints,
symbolic execution can easily handle the tight branch condition
mentioned above; simply solving constraints will generate an
input satisfying the branch condition. Unfortunately, symbolic
execution suffers from a critical limitation, and that is state
explosion. In particular, when symbolic execution faces a
branch, it has to explore both sides of a branch (taken and not
taken), and thereby, its search complexity grows exponentially.
As a result, the application scope of symbolic execution is
usually limited to small size programs [11, 15, 28, 37].

Given such advantages and disadvantages of random fuzzing
and symbolic execution, hybrid fuzzing [32, 34] can be a
general extension of these two. Hybrid fuzzing combines
fuzzing and symbolic execution so as to complement the
aforementioned limitations of each approach. In other words,
when random fuzzing is blocked by a tight branch condition,
symbolic execution comes to the rescue; when symbolic
execution suffers from the state explosion issue, random fuzzing
can assist to pinpoint a specific path to explore and thus
avoid state explosion. By taking both approaches’ advantages,
hybrid fuzzing has demonstrated its effectiveness in discovering
vulnerabilities [44, 51, 53].

However, our observation is that applying hybrid fuzzing
to kernel testing is challenging mainly due to the inherent
characteristics of the kernel1. In the following, we summarize
three kernel-specific challenges that make hybrid fuzzing
ineffective.

First, the Linux kernel uses many indirect control transfers
to support polymorphism, and this renders traditional testing
inefficient. The kernel is designed to support a large number of
different devices and features, and thus throughout the kernel,
it is common to see polymorphism using a function pointer
table. However, random fuzzing cannot efficiently determine
a specific index value fetch the function pointer table if that

1 The discussion throughout this paper particularly focuses on the Linux
kernel, but most of descriptions and knowledge can be generally applied to
other kernels as well. If not mentioned specifically, the kernel implicates the
Linux kernel in this paper.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24018
www.ndss-symposium.org

index comes from an input. Additionally, symbolic execution
can neither easily handle such a case because indexing a table
with symbols results in symbolic dereference and it requires
the exploration of the entire value space by the symbols.

Second, it is difficult to infer the right sequence (and de-
pendency) of syscalls2 so as to build the system states required
for triggering a vulnerability. Unlike userland programs, the
kernel maintains its internal system states during its lifetime
and the same syscalls may perform differently depending on
its invocation context. Therefore, if fuzzing invokes a syscall
without setting up the right pre-context of system states (which
should have been performed through syscalls as well), the
syscall would be early rejected by the kernel, hindering the
deep exploration of the kernel code. Symbolic execution does
not handle this issue either since the kernel has many data
variables to maintain such system states and they may cause
state explosion issues.

Third, nested structures in syscall arguments make interface
templating difficult. Certain syscalls take a large size of the
input from the user space and they use a nested structure in
their arguments — i.e., a field member in one structure points
to another structure. From the perspective of random fuzzing,
such a nested structure is difficult to construct as it has to
correctly guess the internal semantics imposed in the nested
structure (i.e., a pointer pointing to another or a length field
indicating the size of the buffer).

These challenges make hybrid fuzzing difficult, and to the
best of our knowledge, existing kernel testing approaches [26,
35, 40, 43, 49] either naively use each technique separately by
not handling such challenges or imprecisely handle a part of
challenges only by static analysis [16, 24, 33].

To resolve this, this paper proposes HFL, which takes a
hybrid fuzzing approach to test the Linux kernel. In particular,
it addresses the aforementioned kernel-specific challenges for
efficient hybrid fuzzing: 1) HFL converts indirect control-
flows to direct ones, through translating the original kernel
at the compilation time; 2) HFL reconstructs system states
by inferring the right calling sequence. Specifically, to reduce
the scope of symbolic variables, HFL performs static points-
to analysis beforehand such that it can selectively symbolize
data variables involved in system states; and 3) HFL retrieves
nested syscall arguments at runtime by exploiting the domain
knowledge on how the kernel handles the arguments.

We implemented HFL based on well-known kernel fuzzer
Syzkaller and symbolic executor S2E. Then we evaluated
various aspects of HFL in finding vulnerabilities of the Linux
kernel. First, with regards to vulnerability finding capability,
HFL discovered 24 previously unknown vulnerabilities, 17
of which are accordingly confirmed by the Linux kernel
community. In order to compare HFL with state-of-the-art
kernel fuzzers, we also performed a detailed evaluation as
follows. In terms of code coverage, HFL performs better than
Moonshine and Syzkaller, overall 15% and 26%, respectively.
Compared to kAFL, TriforceAFL and S2E, we observed that
the coverage improvement of HFL is more than 4 times. To
compare the vulnerability finding capability, we tested how
long it takes to uncover known 13 crashes in the Linux kernel.

2We will use syscall to indicate system call herein.

Our results showed that HFL found all those vulnerabilities, at
least three times faster than Syzkaller. Moreover, each feature
of HFL, addressing the challenge stemming from the kernel’s
unique characteristics, also showed substantial improvements.

The key contributions of our paper can be summarized as
follows.

• The First Hybrid Kernel Fuzzer. We propose a hybrid
kernel fuzzing, HFL, leveraging the benefits from both
random fuzz and symbolic testing techniques.

• Handling Kernel-specific Challenges. We identify three
key kernel-specific challenges in applying hybrid fuzzing,
and design HFL to resolve such challenges. In particular,
we convert indirect control-flows to direct ones, making
hybrid fuzzing more effective. We also keep the con-
sistency of the kernel’s internal states through inferring
syscall sequence during the process of HFL. Further, we
effectively reason about interfaces of syscall arguments,
which are often in the form of complex and multi-layered
structures.

• Experimental Results in Bug Discovery and Code
Coverage. In our evaluation, HFL found 24 previously
unknown vulnerabilities in recent Linux kernels. Addi-
tionally, HFL achieves around 15% and 26% higher
code coverage over Moonshine and Syzkaller, and over
kAFL/S2E/TriforceAFL, it achieves even four times better
coverage using the same amount of resource (CPU, time,
etc.). In terms of vulnerability discovery performance,
HFL found the known 13 vulnerabilities over three times
faster than Syzkaller.

II. BACKGROUND

To overcome the limitations of random testing, a number of
recent studies [32, 34, 44, 51, 53] have been applying symbolic
execution to complement fuzzing. Composing such a hybrid is
popular based on the fact that traditional fuzzing and symbolic
execution have a negative correlation as we describe in the
following.

Traditional Fuzzing. Traditional Fuzzing generally refers to a
technique that generates random input to test the target program.
Because this random testing is performant and scalable, it
can quickly test a vast number of real-world applications.
In particular, representative fuzzers such as AFL [52], Clus-
terFuzz [21], and Syzkaller [46], have shown remarkable
results discovering many software vulnerabilities. However,
such random fuzzing techniques are often stuck due to the
inherent limitation; testing with randomly generated input
cannot explore program paths beyond a tight branch condition,
e.g., if (i == 0xdeadbeef), as it requires to guess a single
value out of a huge (232) space. This limitation can easily be
overcome by symbolic execution as we describe next.

Symbolic Execution. Symbolic Execution is a program testing
technique that can generate an input that drives the target
program’s execution to a certain program path. To do this,
symbolic execution takes all input to the target program as
symbols and keeps tracking the program’s runtime context as
symbolic expressions. For instance, when a symbolic execution
meets a conditional branch, it will keep track of branch
conditions as path constraints with respect to symbols. When

2

the execution reaches a program path of interest, symbolic
execution can generate an input to drive the program to that
path by solving symbolic constraints on symbols. A critical
limitation of symbolic execution is that it suffers from the
state explosion problem. This happens whenever the execution
meets a conditional branch. More specifically, as the symbolic
execution meets a conditional branch, it has to explore both
sides of branches, doubling the number of paths (i.e., states) to
explore after passing such a branch. Typical programs contain
a vast number of conditional branches, and even worse, a loop
that processes the input will make the number of to-be-explored
paths grow far faster.

Hybrid Fuzzing. Hybrid Fuzzing, combining fuzzing and
symbolic execution, can complement the aforementioned lim-
itations of each approach. On one hand, random fuzzing is
often blocked by tight branch conditions, however, symbolic
execution can provide an input to explore such a branch. On the
other hand, symbolic execution suffers from the state explosion
problem, however, fuzzing can guide symbolic execution to
only explore a specific path by using an input being tested by
fuzzing (i.e., concolic execution), avoiding the state explosion
problem. Exploiting advantages of each approach, hybrid
fuzzing typically achieves better code coverage than solely
applying each technique. For example, hybrid fuzzers for
user-level applications such as Driller [44] and QSYM [51],
have been demonstrating outperforming results to typical fuzz
testings [39]. However, to the best of our knowledge, we note
that hybrid fuzzing has not been applied to the kernel.

III. MOTIVATION

In this section, we highlight challenges in applying hybrid
fuzzing to kernel as our motivation of designing HFL.

A. Challenges in Applying Hybrid Fuzzing to Kernel

Combining fuzzing and symbolic execution is a promis-
ing approach. However, achieving this in kernel fuzzing is
challenging. We found the following three challenges towards
employing hybrid fuzzing in the kernel:

1) Indirect control transfer determined by input,
2) Internal system state requirements, and
3) Nested argument type inference.

These challenges render naive hybrid fuzzing, which is a simple
integration of fuzzing and symbolic execution, does not work
well in the kernel. More importantly, they stem from the unique
characteristics in the kernel.

Before we elaborate each challenge in detail throughout this
section, we provide a summary of how those challenges make
both fuzzing and symbolic execution difficult as follows. First,
kernel uses lots of function pointers to support polymorphism
as a hardware abstraction layer. However, the use of function
pointer makes both fuzzing and symbolic execution inefficient,
and thereby, naive hybrid fuzzing also becomes inefficient.
Second, kernel execution often depends on a specific internal
state, but typically neither fuzzing nor symbolic execution
handles this, and failure to building such a state will render
testing counterproductive. Building an internal state for having
meaningful testing requires analysis in system call dependencies
(e.g., calling order, arguments, etc.), but hybrid fuzzing that

does not handle this can match the state only by a luck,
which will waste many testing executions. Third, some system
calls require their parameters to hold nested data structures,
and not analyzing such nested structures makes both fuzzing
and symbolic execution unable to generate test programs for
exploring kernel execution that depends on the nested structure.
Testing trials without considering these challenges will not
result in a meaningful kernel execution thus are not helpful for
testing progress.

Unsolved Challenges in Kernel Testing. Those challenges
are not only specific to hybrid fuzzing. They also render
techniques that solely runs either fuzzing or symbolic execution
inefficient. Nonetheless, most of them are not handled well in
fuzzing literature. Table I lists the characteristics of recent
kernel testing methods. Techniques used in the first six
fuzzers, such as perf_fuzzer [49], Digtool [35], kAFL [40],
Razzer [26], PeriScope [43], and FIRM-AFL [54], do not
handle the aforementioned kernel-specific challenges. CAB-
Fuzz [28], which is an S2E-based symbolic execution fuzzer,
handles strict kernel branch conditions, but it does not handle
indirect branches nor the rest of the challenges. Regarding
the second challenge, inferring system call sequence for
building internal system state, IMF [24] attempts to resolve
this by analyzing system call dependencies using syscall traces.
However, their analysis is based on example traces, which is
ad-hoc, and can only infer type and argument dependencies.
MoonShine [33] digs further in this challenge by analyzing
system call dependencies via static analysis. However, such a
static approach generates many false positives, and it does not
infer dependencies in the “value” of parameters, which are only
available at runtime. Regarding the third challenge, inferring
nested argument types, DIFUZE [16] applies static analysis to
infer types of complex syscall arguments. Unfortunately, many
of types used in the kernel are defined as abstract pointers
(e.g., void * or unsigned char *). Because the exact type
information (e.g., size, type flags, etc.) is only available at
runtime in such a case, such a static approach cannot precisely
determine the type of nested objects.

To the best of our knowledge, there is no prior work that
handles kernel-specific fuzzing challenges at runtime, which
is essential to enable an efficient kernel hybrid fuzzing. In
the following, we elaborate on the challenges in detail with
examples to specifically demonstrate why such examples block
both fuzzing and symbolic execution in exploring kernel code.

B. Indirect Control Transfer Determined by Input

The polymorphism pattern in Linux kernel, which often
transfers the kernel control flow via function pointer tables
accessed by system call arguments, makes applying traditional
testing techniques to kernels difficult.

Challenge 1. Discovering Indirect Control-Flow. Linux
kernel makes heavy use of a function pointer table accessed by
system call parameters, tightly related to its design philosophy.
To support a huge number of different devices or features,
i.e., supporting polymorphism with a single interface, most
components in Linux are decoupled with its abstract interface
and implementation layer, where the interface layer is generi-
cally used for accessing a specific implementation. This in fact
is similar to employing polymorphism commonly exercised

3

TABLE I: The comparison of recent kernel fuzzing techniques.

Technique Target Kernel

General Requirements Kernel-specific Requirements

State Explo- Coverage Handling Strict Handling Indirect- Calling Sequence Nested Syscall
sion Free Guided Branch Condition Control Flow Inference Argument Retrieval

(Naive hybrid fuzzing) (§III-B) (§III-C) (§III-D)

perf_fuzzer [49] Linux (perf_event set) ✓ × × × × ×
Digtool [35] Windows ✓ × × × × ×
kAFL [40] Win/Linux/macOS ✓ ✓ × × × ×
Razzer [26] Linux ✓ × × × × ×
PeriScope [43] Linux (drivers) ✓ ✓ × × × ×
FIRM-AFL [54] Firmware ✓ ✓ × × × ×
CAB-Fuzz [28] Windows (drivers) × × ✓ × × ×
IMF [24] macOS ✓ × × × ✓ ×
MoonShine [33] Linux ✓ ✓ × × ✓ ×
DIFUZE [16] Android ✓ × △ × × ✓

HFL Linux ✓ ✓ ✓(§IV-A) ✓(§IV-B) ✓(§IV-C) ✓(§IV-D)

in object-oriented programming languages, such as C++ and
Java, and Linux accommodates such a concept by using a
function pointer table in the C language. More specifically,
Linux typically constructs a function pointer table (i.e., an
abstract interface), which contains a list of function pointers
pointing to concrete implementation. When the kernel performs
a specific operation at runtime, it fetches a corresponding
function pointer by indexing the table. Such a use of a function
pointer table, which are heavily occurring in Linux kernel
implementation, severely hinders traditional testing schemes
from extending code coverage.

Example 1: Indirect Control-Flow in RDMA/AUTOFS.
The example shown in Figure 1 illustrates a case of having an
indirect control transfer caused by using a function pointer table
in the driver, where data communication over Remote Direct
Memory Access (RDMA) network is managed/operated. In this
example, ucma_write() uses a function pointer table, namely
ucma_table, by indexing the table with the header information
of data, controlled by user-level input, char __user *buf.
The function table, ucma_table, holds an array of function
pointers (lines 1-8), where each function pointer implements
a specific functionality of network communication, such as
connect and bind. The functions assigned in the array are
indirectly invoked at line 16. In particular, a value from
userspace, hdr.cmd (copied from buf) serves as an index
to the function table. Depending on the index value, different
functions will be executed from the table. Autofs is another case
in point, a service program for automatically mounting various
file systems. In Figure 2, autofs_ioctl acts as a dispatcher,
which invokes various underlying control functions, using a
function pointer table _ioctls. In a similar way, cmd derived
from the userspace implicitly affects the following control-flow
transfer via an indirect function call.

Although it may be easy to manually understand this code
snippet, automatically exploring such a control transfer is
challenging for conventional testing techniques. In the case
of traditional fuzzing, it has to correctly guess all the array
index values to explore all target functions stored in a function
pointer table. However, matching such concrete index values
based on random mutation would be like finding a needle in a
haystack because the probability of hitting the correct index
value by a chance is extremely low (e.g., 23 correct function
indices among 232 possible values).

1 ssize_t (*ucma_table[])(struct ucma_file *file,
2 char __user *inbuf, int in_len, int out_len) = {
3 [RDMA_CREATE_ID] = ucma_create_id,
4 [RDMA_DESTROY_ID] = ucma_destroy_id,
5 [RDMA_BIND_IP] = ucma_bind_ip,
6 ...
7 [RDMA_JOIN_MCAST] = ucma_join_multicast
8 };
9 ssize_t ucma_write(struct file *filp, char __user *buf,

10 size_t len, loff_t *pos) {
11 struct rdma_ucm_cmd_hdr hdr;
12 ...
13 if (copy_from_user(&hdr, buf, sizeof(hdr)))
14 ...
15 // indirect function invocation
16 ret = ucma_table[hdr.cmd](file, buf + sizeof(hdr), hdr.in, hdr.out);
17 }

Fig. 1: A simplified example with respect to indirect control-flow.

In the case of symbolic execution, if it is capable of
a symbolic pointer dereference [10], in theory, it does not
suffer from exploring such a case. Specifically, when it faces
a symbolic dereference accessing the function pointer table
(e.g., func_ptr[symbol]() in Figure 1), it can symbolically
dereference a value pointed by a function pointer (i.e., retrieve
a function pointer within a function pointer table). However,
allowing such a symbolic dereference would suffer from
state explosion issues. This is because a symbolic execution
technique is not aware of whether a dereference operation is
fetching from the code or data pointer, so it attempts to perform
the symbolic dereference for all dereference cases (including
dereferences for both function pointer table and non-function
pointer table). As a result, it performs a dereference for a
non-function pointer table as well, which is unlikely increasing
the code coverage. Thus, it would introduce a huge number
of trials (i.e., attempting to dereference using all indices of
non-function pointer table) and each trial requires new path
exploration, resulting in state explosion issues.

In order to address this issue, HFL transforms such a
function pointer table dereference into a more explicit form of
control-flow transfer. So HFL instructs the symbolic execution
engine to prioritize on cases dereferencing function pointer
table and de-prioritize non-function pointer cases.

4

1 static int autofs_ioctl(unsigned int cmd,
2 struct autofs_dev_ioctl __user *user) {
3 static ioctl_fn _ioctls[] = {
4 autofs_ioctl_version,
5 autofs_ioctl_protover,
6 autofs_ioctl_protosubver,
7 ...
8 autofs_ioctl_ismountpoint,
9 };

10 unsigned int idx = cmd_idx(cmd);
11 ...
12 fn = _ioctls[idx];
13 ...
14 // indirect function invocation
15 fn(fp, sbi, param);
16 }

Fig. 2: A code snippet of an indirect function call through a function
pointer table.

1. fd = open (“/dev/dev1”, …)
2. ioctl (fd, DRM_ALLOC, {struct d_alloc})
3. ioctl (fd, DRM_BIND, {struct d_bind})

10. void ioctl (fd, cmd, arg) {
11. switch (cmd) {
12. case DRM_ALLOC: drm_alloc (arg1);
13. case DRM_BIND: drm_bind (arg2);
14. …
15. }

struct d_alloc {
s32 a;
s32 ID;
s32 b; }

struct d_bind {
s32 ID;
s32 c; }

20. int drm_alloc (struct d_alloc *arg1) {
21. …
22. idr->id = val;
23. ...
24. arg1->ID = idr->id;
25. }

W

30. int drm_bind (struct d_bind *arg2) {
31. ...
32. if(idr->id != arg2->ID)
33. return -EINVAL;
34. ...
35. /* actual work here */
36. }

R

user

kernel

❶ first
ioctl

❹ second
ioctl

❷

❸ store

❻ load

// Check ID
❺

Fig. 3: The requirement for consistent kernel state.

C. Internal System States

Challenge 2: Coordinating Internal System States. A kernel
maintains internal system states to manage computing resources.
In particular, it keeps track of per-process contexts (i.e., virtual
memory, file descriptors, etc.) or manages peripheral devices to
enable shared accesses to those. Most of these internal system
states are transitioned mainly through a syscall, because a
syscall is a key interface that the kernel accepts the commands
from the user space. Since this syscall and the system states
are highly correlated, if a syscall is invoked without setting up
the system states properly, the syscall would be simply rejected
by the kernel.

For this reason, traditional fuzzing is limited in handling
the kernel as it cannot cater this internal system state well.
More specifically, because it randomly constructs a syscall, it
cannot figure out intricate rules behind syscalls to properly
setup internal system states — how to order multiple syscalls,
parameter dependencies between those.

Concolic execution3 does not work well either. As men-
tioned before, an important decision in performing concolic
execution is to minimize the number of symbolized data
variables, otherwise it would suffer from state explosion issues.
However, there are a huge number of such data variables in

3This paper uses symbolic execution and concolic execution interchangeably.

the kernel (virtually all global/heap variables may look-alike
related to system states).

As we will explain later, HFL addresses this issue through
performing points-to analysis, which guides our concolic
execution to selectively symbolize data variables per-syscall,
rendering HFL’s concolic execution interpret internal system
states well.

Example 2-1: Obvious Syscall Sequence. In order to provide
file system access, the kernel maintains a file descriptor per file
where its state can be shortly defined as { opened, closed }.
Specifically, in response to open syscall, a new file descriptor is
returned where its kernel internal state is initialized as opened.
Then following read/write syscalls are only working if the
state of the file descriptor (specified within read/write syscalls)
is opened. Therefore, read/write syscalls should be invoked only
after the open syscall. Otherwise, read/write syscalls would
immediately return an error, limiting the further code coverage
exploration.

We observe that kernel imposes much more complex syscall
orders than this simple example. They often accompany internal
argument types behind syscall interface, which are implicit in
system call definition, as follows.

Example 2-2. Complex Syscall Sequence in DRM. Direct
Rendering Manager (DRM) is responsible for managing graphic
devices and memory in the Linux system. Figure 3 illustrates a
simplified example of ioctl syscall dependency in the DRM
driver. In the example, if the cmd value is DRM_ALLOC, the
kernel executes drm_alloc. It initializes ID, which in turn
returns back to the user program through the ID field (line 24).
This initialized ID value will be the anchor for the next syscall
accessing DRM devices, in which the ID value refers to the
previously DRM_ALLOC-ed DRM device. One of such follow-up
use cases is using the cmd value as DRM_BIND. In this case,
the kernel executes drm_bind and the ID value is passed to
check for consistency (line 32).

To enhance the coverage in the example, we should consider
two basic conditions. First, we maintain the calling order of
syscalls (i.e., invoking two ioctls where the first is using
cmd DRM_ALLOC and the second is using cmd DRM_BIND).
Next, when invoking these two syscalls, the syscall parameter
dependency should be kept as well. In other words, the ID field
specified through the arg parameter should be propagated—
when invoking cmd DRM_BIND, its ID field should be using the
ID value returned from cmd DRM_ALLOC.

A recent study, IMF [24] attempts to infer kernel system
internals by modeling system call sequence. Given syscall
traces and argument/return types, it implicitly models internal
system by tracking value-flows across syscall arguments and
returns. However, because of its limited analysis scope to user-
domain, IMF is unable to reason about dependencies within
the kernel (e.g., idr->id), and fails to track the flows of the
arguments whose types are invisible in user space (e.g., struct
d_alloc). Such an approach specific to user-domain makes
the inference of kernel state incomplete, thus hinders deeper
kernel code exploration in the end.

Moonshine [33] constructs dependency pairs through static
analysis, and learns internal state dependencies. However, since
it only relies on points-to analysis, its acquired knowledge is

5

limited to the dependencies between system state variables (i.e.,
variable a is aliased with another variable b, or the value of a
is derived from b). Compared to Moonshine, HFL performs
both point-to analysis and symbolic checking, so it can also
figure out precise constraints between those (i.e., variable a
should be the same as variable b, or variable a should be the
same as the addition of variable b and c), which significantly
augments code exploration capability of HFL (IV-C).

D. Nested Syscall Arguments

Challenge 3. Constructing Nested Syscall Arguments. The
kernel is designed to copy data from/to user-space, as it has to
take/return data from/to user-space to serve syscalls. This copy
operation is always performed through specific kernel APIs,
such as copy_from_user and copy_to_user, as the kernel
cannot directly access user-space memory for security reasons,
i.e., Supervisor Mode Access Prevention (SMAP) or Kernel
Page Table Isolation (KPTI). Specifically, copy_from_user
copies a block of data from user-space into a kernel buffer
while copy_to_user does so from kernel to user.

We observe that syscall arguments are often constructed as
nested structures (i.e., a field member in one structure points to
another structure), where this nested feature is being supported
by the above-mentioned copy_from_user. More importantly,
the precise layout of such nested structures can only be known
at runtime in many cases: the structure usually has a size
variable indicating the size of the next nested structure so as
to minimize the size of the to-be copied data.

To better illustrate how these nested structures are supported
by the kernel, the following is the common case how the kernel
handles a nested structure: 1) the kernel first takes a pointer
(specified as a syscall argument) pointing to a data structure A
located in the user-space; 2) the kernel dynamically allocates
the buffer (within the kernel) to hold the copy of A; 3) the
kernel copies A from user-space to this allocated buffer using
copy_from_user; 4) referring to a size parameter within A
(which indicates the size of a nested structure B), the kernel
allocates another buffer to hold the copy of B; 5) the kernel
performs another copy_from_user to copy B from user-space
to its allocated kernel buffer.

Without prior knowledge about such a nested form of
argument structures, traditional fuzzing is unable to fuzz the
entire argument structure properly as it hardly figures out
complex argument formats behind syscalls. Likewise, symbolic
execution fails to infer precise nested structure because it is only
aware of given input space explicitly symbolized; in other words,
it cannot propagate symbolizations beyond nested memory
buffers connected through pointer variables.

Example 3. Nested Syscall Arguments in USBMon. Figure 4
exhibits a simplified function proc_control, which basically
controls USB devices connected. The function, derived from
ioctl syscall, requires multi-layered memory buffers which are
initially indicated by its second argument (i.e., __user arg).
At line 9, the outer memory buffer is first copied into allocated
kernel buffer ctrl. Returned without an error, a subsequent
memory copy, pointed by a field member of the previously
copied buffer (i.e., ctrl.data), occurs with a certain size (i.e.,
ctrl.len) at line 11. Note here that without built-in knowledge
of such a nested and variable-sized form of syscall parameters,

1. struct usbdev_ctrl {
2. void __user *data; // unknown type
3. unsigned len;
4. }
5. int proc_control (…, void __user *arg) {
6. struct usbdev_ctrl ctrl;
7. unsigned char *tbuf; // unknown type
8. …
9. if (copy_from_user (&ctrl, arg, sizeof(ctrl))

10. …
11. if (copy_from_user (tbuf, ctrl.data, ctrl.len))
12. …
13. /* main usb control communication */
14. …
15. }

unknown at static time

data lenctrl:

tbuf:

ctrl.len

memory view
1st level
buffer

2nd level
buffer

Fig. 4: An example presenting nested syscall arguments.

calling
orders

Fuzzer Symbolic
Analyzer

original
kernel

translated
kernel

argument
retrieval

candidate
dependency

pairs

static analysis

translation

hard-to-take branch input

solved branch input

(§IV-B)

(§IV-C) (§IV-D)

(§IV-A)
hybrid-fuzzing

Fig. 5: Overview of HFL.

the execution likely stops (at either line 9 or 11) due to invalid
memory access, before reaching its main functionality (line
14).

As shown in Table I, DIFUZE [16] is capable of identifying
complex syscall arguments. With regards to a nested form of
argument structure, its strategy is to statically keep track and
infer the type of pointer fields in the structure which determines
the inner structure type. Unfortunately, such a static approach
is limited in understanding the nested structure because in the
example above, the type of the inner buffer is not statically
determined (i.e., unsigned char *), and the size of it is
resolved at runtime (i.e., ctrl.len).

IV. DESIGN

This section describes the design of HFL. At a high level,
HFL takes a hybrid fuzzing approach, combining traditional
fuzzing and concolic execution techniques (§IV-A). Moreover,
in order to address the kernel-specific challenges in performing
hybrid fuzzing, HFL designs three different features: 1)
converting indirect control-flows to direct ones (§IV-B); 2)
consistent system state via calling sequence inference (§IV-C);
and 3) retrieving nested syscall arguments (§IV-D).

A. Generic Hybrid Fuzzing Design

Overall, the design of HFL follows previous user-level
hybrid fuzzing techniques, which combine traditional fuzzing
and symbolic execution, as shown in Figure 5. HFL’s general
fuzzing features can be characterized with the following three
features: 1) kernel syscall fuzzing, 2) coverage-guided fuzzing,
and 3) symbolic analysis.

6

Kernel Syscall Fuzzing. HFL identifies kernel bugs that are
triggered by a user program. As such, HFL’s fuzzing scheme
focuses on generating or mutating a user program, which is a
sequence of syscalls, similar to how Syzkaller [46] works. In
order to respect the rules in invoking syscalls, HFL constructs
(or mutates) syscalls based on pre-defined syscall templates.
This pre-defined syscall template dictates how the syscall has
to be constructed. The template includes a list of available
syscalls and its format. For each syscall, the template instructs
the type of syscall parameters, a range of constant values of
syscall parameters, dependency between syscalls (i.e., a return
value of some syscalls should be used as a parameter of other
syscalls).

We note that Linux does not provide a formally defined rule
for syscall invocation, thus this pre-defined syscall template
is not only manually defined but also incomplete, as we
evaluated in §VI-C1. This in fact motivated HFL to design
fully automated kernel-specific features, described throughout
this section.

Coverage Guided Fuzzing. HFL follows a generic coverage
guided fuzzing scheme, as most other fuzzers do (including
AFL [52] and Syzkaller [46]), which prioritizes its fuzzing input
mutation strategy towards extending the execution coverage.
HFL instruments all code blocks in the kernel, and collect
execution coverage information when executing a user program.
Based on such execution coverage information, HFL can
determine whether a new input (i.e., a newly generated
or mutated user program) assists to augment the execution
coverage. To achieve so, HFL keeps track of all code blocks
that are covered before during fuzzing, and checks if the new
input executes any uncovered block. If so, HFL pushes the
new input into a corpus (i.e., a set of inputs, each of which
will be mutated later).

Symbolic Analyzer. Fuzzer’s well-known limitation is that it
cannot drive an execution passing through a hard constraint
imposed in some branch conditions. Thus, fuzzer’s execution
coverage does not improve once reaching branches with
those hard constraints. This in fact motivates the adoption of
hybrid fuzzing techniques, which typically combines symbolic
execution to solve such hard constraints.

More specifically, during the fuzz testing, HFL’s fuzzer
identifies a hard-branch in the kernel, which was always
evaluated into true (or false) throughout a number of user
program executions, and thus the code reachable with the
other evaluation result was never explored. To detect such
hard-branches, HFL maintains a frequency table during the
fuzz testing, counting the number of true/false evaluations
per branch; thus it is able to filter out uninteresting branches
whose underlying blocks are already seen. Once identified,
one of the corresponding user program triggering the hard
branch is passed over to the symbolic analyzer. Then the
symbolic analyzer symbolizes all the syscall parameters in the
given user program, and then starts performing typical concolic
execution until it reaches the hard branch. After reaching, the
symbolic analyzer queries the solver if it can find a symbolic
assignment flipping hard-branch’s evaluation results. If so, based
on the solved symbolic assignment, the symbolic analyzer
reconstructs the user program which flips the evaluation of the
hard-branch, providing a new user program to the fuzzer. It is

1 // before translation
2 ret = ucma_table[hdr.cmd](...);
3

4 // after translation
5 if (hdr.cmd == RDMA_CREATE_ID)
6 ret = ucma_create_id (...);
7 else if (hdr.cmd == RDMA_DESTROY_ID)
8 ret = ucma_destroy_id (...);
9 ...

Fig. 6: Conversion to direct control-flow.

worth noting that, since path exploration is offloaded to HFL’s
fuzzer, the symbolic analyzer is limited to following along
a single execution path (path explosion-free) and on-demand
constraint solving.

B. Converting Control-Flow from Indirect to Direct

As described before in §III-B, heavy use of a function
pointer table in the kernel makes hybrid-fuzzing ineffective,
mainly because it introduces indirect control-flows that are
unfriendly to traditional analysis techniques.

To this end, HFL designs an offline translator, operating
based on the source code of the kernel, which transforms
indirect control-flows to direct control-flows. The translator
unfolds an indirect control-flow to a direct one while main-
taining the semantics of conditional branches, such that all
underlying code blocks are reachable through direct control-
flows. Specifically, the translator iterates over each instruction
at compile-time. When facing the indirect control-flow, the
following procedure is performed: 1) The translator ensures
that an index variable of the function pointer table originates
from syscall parameters. This is because we are not interested in
control transfer patterns, which are not controllable by syscall
parameter mutation. Thus, HFL keeps track of how syscall
parameters are propagated by performing inter-procedural data-
flow analysis. Considering speed/accuracy trade-off, our data-
flow analysis is context-, and flow-insensitive but field-sensitive.
2) Given the function table and its feasible index values, HFL
performs branch transformation (similar to loop unrolling) —
for each index value, HFL inserts a conditional branch jumping
to a corresponding function pointer. Figure 6 summarizes the
simplified result of the code transformation.

C. Consistent System State via Syscall Sequence Inference

Random testing in charge of executing a sequence of system
calls often fails to explore much of kernel code but returns
an error early (e.g., return with -EINVAL;). This is because
if syscall execution sequences are not following its intended
semantics, the kernel’s internal states are not accordingly setup
to perform syscalls (§III-C).

In order to address this issue, HFL infers a proper order of
syscalls and syscall dependency. To this end, HFL first obtains
potential dependency pairs, as a result of static analysis on the
kernel, then validates the collected dependencies to distinguish
true dependency pairs. Further, it detects parameter value
dependencies by keeping track of dependency value propagation
connected with symbolized syscall arguments. Once a valid
order of syscall sequences are retrieved, HFL provides feedback
for fuzzer such that it can be immediately applied for future
mutation. In the following, we describe each step in detail.

7

1) Static Analysis to Find Candidate Dependency Pairs. As
a first step, HFL performs static analysis to capture candidate
dependency pairs. In particular, HFL performs inter-procedural
points-to analysis on the target kernel, collecting a pair of
read/write operations, i.e., one instruction performs the read
instruction and the other performs the write, where both
instructions are reading from and writing to the same memory
location. We call these read/write operation pairs as candidate
dependency pairs. Note that this analysis is performed offline
before performing hybrid fuzzing, and the next phase, which is
part of hybrid fuzzing, takes such candidate dependency pairs
as input.

2) Runtime Validation to Identify True Dependencies.
Given a set of candidate dependency pairs, HFL now starts
concolically executing the kernel. In order to filter out false
dependencies due to the inherent false positive issues of the
points-to analysis, HFL performs basic validation in this
phase. More specifically, when HFL symbolically executes both
instructions of any candidate dependency pair, HFL checks if
these access the same address. If so, it indicates that instructions
in this dependency pair truly depend on each other, yielding a
true dependency pair. It is worth noting that once identifying
this true dependency, HFL is able to infer syscall invocation
order — i.e., the syscall performing the write operation has to
be invoked before the syscall performing the read, because the
write operation may initialize the value that the read operation
relies on. If the write is not performed beforehand, the syscall
including the read may simply return an error.

3) Symbolic Checking to Detect Parameter Dependency.
Besides determining the order of syscalls, a dependency pair
also determines multiple parameters across syscalls (shown
in §III-C). To learn this, HFL makes use of symbolic con-
straint information, coming from symbolized syscall arguments.
Specifically, HFL keeps track of the flow of the value caused
by dependency objects, and figure out the out/inbound points
of its read/write operation, respectively. Also, this allows to
identify relevant memory location (offsets) and the size of it,
out of symbolized argument memory in syscall.

Since HFL’s fuzzer constantly interacts with the symbolic
analyzer, HFL immediately feeds the output of the ordering
set produced by concolic execution to the fuzzer, and reflects
the up-to-date syscall-order information in the later mutation.
In this manner, HFL keeps identifying new syscall relations
and updating the result until its termination.

Example: Inferring Syscall Dependency to Reconstruct
System State. Figure 7 depicts a workflow of our syscall
sequence inference using the example in Figure 3. Given a user
program along with (candidate) instruction dependencies, HFL
starts executing the program concolically (➊). Meanwhile, the
instructions belonging to the pairs are placed under observation.
Once HFL hits the two instructions in a given pair (in any order)
(➋), it examines the pair for runtime validation. Particularly,
HFL takes two objects (i.e., operands) in the dependency
relationship from the both instructions, then see if their memory
addresses are equal (➌). If satisfied, this pair turns out to be a
true dependency (➍).

Since the argument memory chunk in syscalls is symbolized
at the initial phase (§IV-A), access to symbolized memory
region propagated allows to locate an offset of dependency on

the symbolic memory (➎). Once the execution is finished, it
consolidates the true dependency all together (➏), HFL setups
and establishes new syscall invocation rules (➐). As the last
step, such a new set of invocation orders is fed back and will
be used for mutating new input programs (➑).

D. Nested Syscall Argument Retrieval

Aside from syscall invocation sequences, system call fuzzing
has to determine argument values. As shown in Figure 4,
it is often required to understand complex nested argument
structures, which are unknown in the syscall definitions,
rendering fuzzer fail to keep exploring the kernel code.

Therefore, HFL understands and retrieves nested syscall
arguments through a combination of concolic execution and
kernel domain knowledge on data transfer functions. The reason
why HFL focuses on the data transfer functions (e.g., copy_-
from_user) is that those are responsible for delivering data
between user and kernel space, constituting the key mechanism
in constructing the nested syscall arguments.

We observe that the following two pieces of information
are the key to re-construct the nested syscall arguments: 1)
memory location connecting to nested input structures; and 2)
the length of memory buffer arguments.

To this end, we keep monitoring invocations of the transfer
functions during concolic execution. Once invoked, we check
if its source buffer is symbolically tainted. This allows concolic
executor to focus on certain transfer functions that come from
the syscall of interest. Thus we ensure the source buffer stems
from the upper-level buffer originating from the parameter
values. Similar to §IV-C, using its symbolic state, we keep
track of a distance value (offset) to the location, where a
pointer field (pointing inner buffer) will reside. Meanwhile, we
can obtain the length of buffers by tracking parameter values
of the transfer functions. This allows to learn nested buffers
and the size of it as well.

Example: Retrieving Nested Syscall Argument. Figure 8
steps through the argument retrieval in detail. A syscall
invocation reaches the internal kernel function proc_control,
along with its argument values (➊). At the first invocation of
the transfer function at line 4 (➋), we place the arg buffer
under the control and obtain the buffer size (0x14) from its
third parameter value (➌). Next, in the subsequent invocation
at line 6 (➍), we make sure ctrl.data is symbolically tainted
and both buffers are nested relation (➎). Using symbolic state
of the buffer, we learn a corresponding offset value, where a
pointer variable will later reside in the upper buffer. After the
execution is terminated, we define a new argument rules for
the invoked system call (➏-➐), then pass it over to fuzzer (➑).

V. IMPLEMENTATION

HFL is implemented on top of the existing fuzzing tech-
nique Syzkaller [46], and symbolic execution engine S2E [15].
We basically leverage the core features of both tools for basic
fuzzing and symbolic execution features, and make significant
adjustments to them to realize the design of HFL. For instance,
HFL makes use of input generation algorithm equipped in
Syzkaller as well as symbolic engine (e.g., constraint solver)
from S2E. With respect to syscall argument symbolization, we

8

W : ioctl, DRM_ALLOC, offset(0x8),size(0x4)
R : ioctl, DRM_BIND, offset(0x0),size(0x4)

20. int drm_bind (void *arg2) {
21. ...
22. if(idr->id == arg2->ID)
23. ...
24. }

10. int drm_alloc (void *arg1) {
11. …
12. idr->id = val;
13. ...
14. arg1->ID = idr->id;
15. }

W

R

true dependency struct _1 {
u64 x;
u32 ID;
u64 y; }

ID

{struct d_bind} arg2

{struct d_alloc} arg1

ID

0x8
prio1 : ioctl (fd, DRM_ALLOC, {*_1})
prio2 : ioctl (fd, DRM_BIND, {*_2})

❼ inferred syscall sequence

❷ hit

❷ hit

=

❺ symbolic
argument

❸ address

❸ address

<instruction pair>

W : 12: idr->id
R : 22: idr->id

❹ yes

❺ symbolic
argument

❻ extract
offset

❻ extract
offset

memory view

struct _2 {
u32 ID,
u64 x; }

1. fd = open (“/dev/dev1”, …)
2. ioctl (fd, DRM_ALLOC, {struct d_alloc})
3. ioctl (fd, DRM_BIND, {struct d_bind})

❶ syscall ioctl invocationsuser

kernel

post
processing

❽ feedback

memory view

●: Runtime Validation
: Symbolic Checking●

Fig. 7: Workflow of syscall sequence inference.

1. int proc_control (…, void *arg) {
2. struct usbdev_ctrl ctrl; unsigned char *tbuf;
3. …
4. copy_from_user (&ctrl, arg, sizeof(ctrl));
5. …
6. copy_from_user (tbuf, ctrl.data, ctrl.len));
7. …
8. }

❼ inferred syscall interface

ctrl:

tbuf:

ioctl (fd, USB_CTR, {*_1})

struct _1 {
u64 x;
{*_2} y;
u64 z; }

❹ hit

❷ hit

❸

❺

❻ final memory view

0x14

0x10

upper
buffer

lower
buffer

0x8

0x10

lower buffer

data

0x14

upper buffer

0x8

struct _2 {
u64 x;
u64 y; }

❶ syscall

ioctl (fd, USB_CTR, {Unknown??})
❽ feedback

user

kernel

post processing

Fig. 8: Workflow of nested syscall argument retrieval.

leverage a function s2e_make_symbolic from S2E API, and
adjust it to instrument the target kernel in many locations. To
handle indirect control-flow, we augment gcc [3] (in particular,
GIMPLE representation), to equip the translation functionality
toward direct control-flow. To perform inter-procedural static
analysis on the Linux kernel source code, we employ SVF static
analyzer [45]. Since its analysis is carried out on LLVM IR, we
translate the kernel source code to appropriate LLVM bitcode
beforehand, using llvmlinux [18]. Table X summarizes our
efforts of modifying the tools used in HFL. We open-sourced
our reference implementation such that security analysts and
researchers can benefit [1].

VI. EVALUATION

In this section, we evaluate the effectiveness and efficiency
of HFL. In particular, our evaluation examines both overall
(§VI-B) and feature-specific (§VI-C) aspects of HFL. We aim
to answer the following research questions:

• Q1: How effective is HFL in finding kernel bugs? (§VI-B1,
§VI-B4)

• Q2: What is the overall coverage enhancement that HFL
brings over existing approaches? (§VI-B3)

• Q3: How efficiently can HFL find bugs compared to other
fuzzers? (§VI-B2)

• Q4: What is the contribution of each feature in HFL to
the overall performance? (§VI-C1, §VI-C2)

A. Experimental Setup

All experiments are performed on a machine with an Intel
Xeon E5-4655 2.50 GHz CPU and 512GB RAM running
Ubuntu 14.04 LTS. For both fuzzer and symbolic analyzer,
we make full use of 32 CPU cores4 i.e., 16 dedicated
virtual machines each (one core per VM). We use a 10
second timeout to prevent an unexpectedly time-consuming
constraint solving from delaying the entire symbolic execution.
For all experiments, obvious syscall invocation orders (e.g.,
open-write), which are simply retrieved by syscall definitions,
are given by default, such that our evaluation can focus on
testing the complex syscall sequences exclusively. We note
that our evaluation follows a recent fuzzing evaluation work
[29] although slightly different due to the unique features of
OS-specific fuzzing.

Subsystem Classification. A kernel has a large codebase
that many subsystems share together. Based on the functional
characteristics of subsystems, relevance to different system
call interfaces, and the likelihood of vulnerability [16, 33],

4 For a fair comparison, all of baselines used in the subsequent experiments
exercise 32 CPU cores as well.

9

Category # Internal-type Syscalls used

Device drivers 32 open, ioctl, write, read

Network 20 socket, accept, bind, listen, ioctl, getsockopt,
setsockopt, sendto, recvfrom, sendmsg, recvmsg

File system 6 open, read, ioctl, write, lseek

TABLE II: Classification of subsystem for the experiment.

we classify the subsystems into three categories: network, file
system and device drivers. Within each category, we examine
a variety of implementations that handle important kernel
features, chosen based on their availability and sustainability
through different kernel versions. In order to find the system call
interfaces used by the subsystems, we leverage the registered
virtual file operations in the implementation code and identify
the related system calls. Table II summarizes the result of the
classification.

B. Overall Effectiveness

1) Vulnerabilities: Upon our implementation and test envi-
ronment, we apply HFL to test several Linux kernels which
were the latest at the time of the experiment. To detect
vulnerabilities, we leverage known kernel-specific sanitizers5.
Once configured, we run HFL and detect crashes being
triggered. Table III shows the result of crash detection. In
total, HFL found 51 vulnerabilities. We manually analyzed and
figured out the root causes, distinguishing new vulnerabilities.
In summary, 24 vulnerabilities turned out to be previously
unknown. We reported all the newly found vulnerabilities —
out of them, 17 were confirmed (four of them are already
patched by the respected kernel developers).

As shown in the table, of the unique crashes, many were
triggered while fuzzing on, in particular, the kernel drivers.
This is because, as we will describe in §VI-B3, the most
coverage improvement lies in the device driver code, hence there
exist more opportunities to discover crashes in this category.
According to the crash type, most of them were caused by both
integer overflow and memory access violation, followed by
uninitialized variable access, etc. These reported crashes have
security impacts, which can be abused to launch either Denial-
of-Service(DoS) or arbitrary code execution attacks, negatively
impacting the security of an entire operating system. Note that
roughly half of the crashes were detected even in the stable
version of the Linux kernels, rather than (unstable) release
candidate (rc). Further, some of the crashes were discovered in
the core part of the Linux kernel, such as memory allocation
and timer system, impacting the entire kernel operations. It is
worth noting that Linux kernel has become more mature over
decades and has been exhaustively tested by tons of machines
with high-performance computing capacity [46]. Nonetheless,
we believe HFL showed the notable performance, in terms of
bug finding capability.

2) Efficiency: Besides the discovery of vulnerabilities, we
emphasize the superiority of HFL in terms of bug-finding per-
formance. To compare with HFL, we extra run a random syscall
fuzzer (using Syzkaller) in the same experiment environment as
in §VI-B1. In such a limited experiment, we figured that both
HFL and Syzkaller commonly discovered 13 known crashes

5 kasan [5], kmsan [6] and ubsan [7]

0 10 20 30 40 50
Time (hour)

0

2

4

6

8

10

12

C
u
m

u
la

ti
v
e
 s

u
m

 o
f

cr
a
sh

e
s

HFL

Syzkaller

Fig. 9: Comparison of bug-finding time for 13 known crashes
(Table IX).

(listed in Table IX) that were all existing crashes and already
reported (but not patched) by other developers or analyzers. To
compare the performance, we measured the time elapsed at the
moment of each crash discovery, and then learn how fast HFL
discovered all these crashes. Figure 9 summarizes the result of
the performance comparison. As seen, HFL detected all these
vulnerabilities at the earlier time (around 15 hours) than that
of Syzkaller (over 50 hours), which reflects HFL shows better
capability in its bug-finding efficacy.

3) Overall Coverage: The goal of HFL is to gain maximum
code coverage by exploring as many execution paths as possible.
To evaluate this, we count the number of unique code blocks that
HFL has discovered throughout its entire process6. To highlight
better results of HFL, we compare with 5 popular kernel
fuzzers i.e., baseline Syzkaller, S2E [15], Moonshine [33],
kAFL [40] and TriforceAFL7 [22]. Since each of which has its
own particular way to measure code coverage8, we make all
of them (including HFL) use the same coverage measurement,
KCOV [4], for a fair comparison. For techniques that are not
designed for directly testing various system calls, e.g., S2E
and kAFL, we modified their frameworks to better handle such
cases in our experimental environments for a fair evaluation.
In the case that seed values are provided by default, we respect
them to use in the test; otherwise we used a randomly generated
one.

We then conduct experiments, taking a coverage measure-
ment, for 50 hours 3 times. The result is summarized in
Figure 10. In comparison, HFL not only reaches the peak point
faster, but explores more code blocks for all the categories. For
device drivers, in particular, the coverage difference between
HFL and other techniques is huge over the other two. According
to our analysis, it is mainly because of the frequent use of ioctl
function, where its second argument cmd is hardly predictable
and the third arg is typically unknown type featured with
various-sized and multi-layered structure (III-D). We observed
that Moonshine showed the most similar performance in terms
of the coverage compared to HFL. However, we notice that
its performance benefits would not go beyond that of HFL,
because it cannot handle hard-to-take branches, which are

6Although our decision of coverage measurement may miss some of unique
paths, considering overhead of measurement, we believe it is in a practical
and effective way.

7AFL-based [52] Linux kernel fuzzer.
8HFL, Moonshine and Syzkaller exercise KCOV-based measurement whereas

kAFL, S2E and TriforceAFL have measurement systems on their own [17, 22,
40].

10

Crash type Description Kernel Subsystem Status Impact

integer overflow undefined behaviour in mm/page_alloc.c 4.19-rc8 memory patched likely exploitable
integer overflow undefined behaviour in net/can/bcm.c 4.19.13 network patched DoS
integer overflow undefined behaviour in drivers/input/misc/uinput.c 4.19.13 drivers patched DoS
uninitialized variable access undefined behaviour in fs/f2fs/extent_cache.c 5.0.7 file system patched DoS
memory access violation use-after-free Read in ata_scsi_mode_select_xlat 4.17.19 drivers confirmed likely exploitable
memory access violation use-after-free Read in raw_cmd_done 4.19-rc2 drivers confirmed likely exploitable
memory access violation warning in pkt_setup_dev 4.19-rc2 drivers confirmed DoS
uninitialized variable access uninit-value in selinux_socket_bind 4.19-rc8 network confirmed likely exploitable
memory access violation undefined behaviour in drivers/block/floppy.c 4.19-rc8 drivers confirmed likely exploitable
integer overflow undefined behaviour in drivers/net/ppp/ppp_generic.c 4.19-rc8 drivers confirmed DoS
uninitialized variable access uninit-value in selinux_socket_connect_helper 4.19-rc8 network confirmed likely exploitable
integer overflow undefined behaviour in ./include/linux/ktime.h 4.19.13 timer confirmed DoS
integer overflow undefined behaviour in drivers/input/mousedev.c 4.20.0 drivers confirmed DoS
integer overflow undefined behaviour in drivers/pps/pps.c 4.20.0 drivers confirmed DoS
memory access violation general protection fault in spk_ttyio_ldisc_close 4.20.0 drivers confirmed likely exploitable
integer overflow undefined behaviour in net/ipv4/ip_output.c 5.0-rc2 network confirmed DoS
integer overflow undefined behaviour in drivers/scsi/sr_ioctl.c 5.0-rc2 drivers confirmed DoS
memory access violation use-after-free Write in vgacon_scroll 4.17-rc3 drivers reported likely exploitable
memory access violation use-after-free Write in do_con_write 4.17-rc3 drivers reported likely exploitable
task hang task hung in drop_inmem_page 4.17.19 file system reported DoS
memory access violation null-ptr-deref Write in complete 4.17.19 drivers reported DoS
integer overflow undefined behaviour in fs/xfs/xfs_ioctl.c 4.19.19 file system reported DoS
memory access violation undefined behaviour in fs/jfs/jfs_dmap.c 4.19.19 file system reported DoS
task hang task hung in reiserfs_sync_fs 4.19.19 file system reported DoS

TABLE III: List of 24 previously unknown vulnerabilities in the Linux kernels discovered by HFL.

mostly covered by HFL’s feature. Regarding S2E, it got stuck
at an early stage as the number of symbolic states grows;
thus much less code blocks were hit compared with HFL
and the others. Both kAFL and TriforceAFL do not show
impressive coverage results, because they neither resolve tight
branch conditions nor consider OS-specific features stated in
§III. In summary, the overall coverage improvement of HFL
over Moonshine and Syzkaller was around 15% and 26%,
respectively. Compared to kAFL, S2E and TriforceAFL, we
observed HFL’s coverage improvement was more than four
times.

In this regard, Table IV highlights the percentage distribution
of explored code blocks across the tested fuzzing schemes
for the overall category at the termination of the 50-hour
experiment. Note that unlike Figure 10, this comparison is
based on the line number9 due to incomparable code block
addresses (which rely on its own kernel build environment).
Most of the blocks explored by Moonshine and Syzkaller fall
into the ones discovered by HFL. In terms of the number of
blocks uniquely identified by each fuzzer, HFL exhibits much
better performance (18.1%) against all the others, as a result
of our hybrid approach along with kernel-specific solutions.
Furthermore, we compared the upper bound number of the
coverage, i.e., taking the upper bound as the total (absolute)
code blocks statically obtained from the target Linux kernel10.
With this maximum code block counts as the upper limit (100%)
of the coverage, HFL has approximately explored 10.5% of
the total coverage while exhibiting less percentages for the
other baselines, shown in Table V. We think this result is due
to HFL’s design choice, which only mutates entry points of
system calls. We hope to improve the coverage by extending
our mutation scope to the other kernel input space, other than
system calls, though it is out of scope in this paper.

9addr2line [2] is used for translation.
10Code block extraction is based on KCOV-assisted instrumentation.

Coverage

{H ∩ M ∩ S} − {K ∪ T ∪ E} 38.6%
H − {M ∪ S ∪ K ∪ T ∪ E} 18.1%
{H ∩ M} − {S ∪ K ∪ T ∪ E} 12.1%
{H ∩ M ∩ S ∩ K} − {T ∪ E} 9.9%
{H ∩ S} − {M ∪ S ∪ T ∪ E} 4.1%
{H ∩ M ∩ S ∩ K ∩ T} − E 3.8%
etc. 13.3%

Union of all 100%

TABLE IV: Percentage distribution for the overall coverage result
after running for 50 hours. 100 percent indicates the union of total
code blocks found by all the baselines tested in the experiment. The
notations H, M, S, K, T and E denote HFL, Moonshine, Syzkaller,
kAFL, TriforceAFL and S2E, respectively.

Coverage

HFL 10.5%
Moonshine 9.0%
Syzkaller 7.9%
kAFL 1.9%
TriforceAFL 0.9%
S2E 0.8%

TABLE V: Coverage percentage over the maximum (absolute)
coverage. 100 percent coverage indicates the entire code blocks
(statically identified in the target kernel binary) have been covered.

4) Case Study: In this section, we demonstrate a selective
crash example discovered by HFL, and describe how HFL is
used to reveal such a crash during the experiment.

page_alloc. Memory management is one of the key tasks of
operating systems — through this subsystem, OS kernels govern
the entire (physical and virtual) memory, and even the rest
of subsystems rely on it for kernel memory allocation. In
Figure 11, we present a simplified code snippet leading to a

11

0 10 20 30 40 50
Time (hours)

0
10

00
020

00
030

00
040

00
050

00
060

00
0

#
 c

o
d
e
 b

lo
ck

s

HFL

kAFL

S2E

Syzkaller

TriforceAFL

Moonshine

(a) Overall

0 10 20 30 40 50
Time (hours)

0
50

00
10

00
015

00
020

00
025

00
030

00
0

#
 c

o
d
e
 b

lo
ck

s

(b) Network

0 10 20 30 40 50
Time (hours)

0
50

00
10

00
015

00
020

00
025

00
030

00
0

#
 c

o
d
e
 b

lo
ck

s

(c) File system

0 10 20 30 40 50
Time (hours)

0
50

00
10

00
0

15
00

0
20

00
0

#
 c

o
d
e
 b

lo
ck

s

(d) Drivers

Fig. 10: Coverage results during a 50-hours run. The line indicates averages while the shaded area represents 95% confidence intervals across
three runs. The coverage improvement of HFL over Moonshine and Syzkaller is 15% and 26% (overall), respectively. Compared with the other
three (kAFL, TriforceAFL and S2E), HFL shows more than 4 times of improvement.

crash in memory allocation procedure.

In the scenario, a user program opens a device file and
conveys a message via syscall ioctl. Within the kernel, its
corresponding implementation (i.e., fd_ioctl) sends a request
for kernel pages, to store user-supplied data to be transferred.
We noticed here that although the amount of the kernel pages
requested is fully determined by the syscall argument, no
sanity check was deployed along this particular path (against
such data flow from argument input). Therefore, via syscall
argument, illegitimate user input can immediately affect kernel
page allocation, eventually leading to fatal memory problems,
such as out of memory.

In order to follow such a bug-triggering path, we need to
organize syscall arguments in a careful manner. At first, the
variable cmd (derived from the second argument of the syscall)
should be equal to a particular value (line 16). HFL precisely
reasons about it by evaluating the expression relevant to the
symbolized cmd. Second, it should have prior knowledge of
an internal structure (i.e., fd_raw_cmd) of the input stream
param (the third argument) such that len can be fuzzed enough
to cause overflow (line 23); otherwise this field may remain
unfuzzed. HFL keeps track of such a structure and correctly
guesses the size of input stream, thanks to our syscall argument
interface retrieval. On the other hand, other state-of-the-arts [24,
33] hardly reveal the vulnerability because they neither correctly
resolve such a branch predicate nor infer its valid argument
structure.

C. Per-feature Effectiveness

1) Per-feature Coverage: Since HFL is characterized with
multi-featured fuzzing scheme, we verify how much each HFL
feature contributes to the overall coverage. In order to better
highlight, we conduct an extra experiment based on selective
three test cases (i.e., ext4, rds11 and ppp12), where each
requires distinct HFL features to achieve the most performance
improvement (Table VI). Considering the saturation points
learned in our study, the experiment last up to 3 hours, we
measure explored execution blocks afterward. To compare the
result, we leverage existing pre-defined syscall templates (or

11Reliable Datagram Sockets (RDS).
12Point-to-Point Protocol (PPP). In this paper, PPP is considered as one of

devices because it is accessed through a device file "/dev/ppp".

1 // user-supplied input format through ioctl function
2 struct fd_raw_cmd {
3 ...
4 void __user *data;
5 char *krn_data;
6 struct fd_raw_cmd *next;
7 long len; // used for huge kernel memory request
8 };
9

10 int fd_ioctl(struct block_device *bdev, fmode_t mode,
11 int cmd, long param)
12 {
13 struct fd_raw_cmd *ptr;
14 ...
15 switch (cmd) {
16 case FDRAWCMD: // tight branch condition
17 {
18 ptr = kmalloc(sizeof(struct fd_raw_cmd), GFP_KERNEL);
19 ret = copy_from_user(ptr, param, sizeof(*ptr));
20 ...
21 // BUG!! A large value of "ptr->len" can cause
22 // out of memory in the following function
23 ptr->krn_data = (char *)fd_dma_mem_alloc(ptr->len);
24 ...
25 }

Fig. 11: Code snippet leading to a crash in kernel memory allocation

rules) that are written by labor-intensive manual analysis [46].
Under the assumption that those template rules are well-crafted
so as to cover all of the HFL’s features, we serve it as the
upper bound for this limited study despite its inherent scalability
limitation.

The experiment result is presented in Figure 12. Note that, in
the figure, we represent both features, syscall sequence inference
and argument interfaces retrieval, in a single line (F-C) because
they are correlated i.e., depend on each other on their execution
path. As expected, HFL equipped with all the features (HL)
exhibits the high coverage improvement over the others, and its
result is even close to that of the template-based case (100%).
Interestingly, for the two cases (i.e., ext4 and rds), we noticed
ours even outperforms the template results (i.e., over 100%).
According to our analysis, this is because their manual rules
are either still in progress or not well-crafted enough. This
apparently tells, unlike automatic and accurate nature of HFL,
writing manual rules by human-effort is subject to error-prone
as well as time-consuming task. Another notable observation is
that the hybrid feature (F-H) makes a significant contribution
to the overall coverage enhancement although other features

12

Testcase Category F-H F-I F-C

ppp Drivers � �
ext4 File system �
rds Network � �

TABLE VI: HFL’s feature requirements for improving coverages
with respect to selective 3 test cases. F-H and F-I denote the features
of hybrid-approach and handling indirect control-flow, respectively.
F-C represents a combined feature of both syscall sequence inference
and argument interface retrieval.

F-N F-H F-I F-C HL
0

20

40

60

80

100

C
o
ve

ra
g
e
 (

%
)

(a) ext4

F-N F-H F-I F-C HL
0

20

40

60

80

100

120

(b) rds

F-N F-H F-I F-C HL
0

20

40

60

80

100

(c) ppp

Fig. 12: Feature-specific coverage result for 3 test cases. F-N is a
baseline fuzzer (absence of HFL features) while HL indicates HFL
equipped with all of the features. For each test case, an appropriate
system call rule is used for its upper limit (100%).

are still in demand. The reason is that on their execution path,
other features heavily depend on the hybrid feature though
hybrid feature alone barely reaches the maximum coverage.
In other words, certain code blocks to be addressed by other
features only appear when a strict branch condition, lying on
the path at an earlier stage, is resolved by the hybrid feature.

In summary, we emphasize that all of HFL’s features, rather
than exclusively applying separate feature, are essential for
accomplishing the maximum coverage. In addition, full featured
HFL presents outstanding coverage improvement (even better
than loosely written syscall templates) without ongoing manual
efforts.

2) Per-feature Case Studies: In this section, using concrete
examples found during the per-feature experiment above, we
demonstrate and highlight the superiority of HFL in detail,
compared with exiting kernel fuzzing schemes.

Figure 13 presents a piece of code in RDS network, where
a control-flow transfer through function pointer table (line 11)
is a practical obstacle against high execution coverage. As
mentioned, random fuzz testing does not work well against
such an indirect control transfer pattern. Observe that an
extra operation on a variable flowing towards the array index
(i.e., optname - RDS_INFO_FIRST) makes the fuzzer more
difficult to hit all underlying function blocks. On the other hand,
through the control-flow conversion, HFL correctly guesses
and takes all elements of the array rds_info_funcs, thereby
exploring underlying functions behind them.

In Figure 14, we showcase a simplified code, in which a
calling sequence between two different ppp ioctls (PPPNEWUNIT
and PPPCONNECT) is a prerequisite to operate correctly, leading
to promoting coverage performance. Since IMF [33] relies
on execution logs, such an internal dependency in the kernel

1 #define RDS_INFO_FIRST 10000
2

3 typedef void (*rds_info_func)(struct socket *sock, int len,
4 struct rds_info_iterator *iter, struct rds_info_lengths *lens);
5

6 rds_info_func rds_info_funcs[RDS_INFO_LAST - RDS_INFO_FIRST +1];
7

8 int rds_info_getsockopt(struct socket *sock, int optname,
9 char __user *optval, int __user *optlen)

10 {
11 func = rds_info_funcs[optname - RDS_INFO_FIRST];
12 ...
13 func(sock, len, &iter, &lens);
14 ...
15 }

Fig. 13: An indirect control-flow in RDS network.

1 long ppp_ioctl(struct file *file, int cmd, long arg) {
2 ...
3 switch (cmd) {
4 // 1. write dependency
5 // [syscall]: ioctl(fd, PPPIOCNEWUNIT, {VAL}<-unit)
6 // [NOTE]: VAL is written to untyped syscall argument
7 case PPPNEWUNIT:
8 // allocate an VAL to unit
9 err = ppp_create_interface(net, file, &unit);

10 if (err < 0)
11 break;
12 // write the VAL toward userspace
13 if (put_user(unit, arg))
14 break;
15 ...
16 // 2. read dependency
17 // [syscall]: ioctl(fd, PPPIOCCONNECT, {VAL}->unit)
18 // [NOTE]: VAL is read from untyped syscall argument
19 case PPPCONNECT:
20 // read VAL from userspace
21 if (get_user(unit, arg))
22 break;
23 ppp = ppp_find_unit(pn, unit); // check the VAL for dependency
24 // [FAIL]: return if (untyped) value dependency is violated
25 if (!ppp)
26 goto out;
27

28 /* main connection procedure */
29 ...
30 }

Fig. 14: A piece of code involving a calling dependency across PPP
ioctls.

is untraceable. Further, the corresponding argument types are
too implicit to figure out in user domain. Moonshine [33] is
capable of learning this dependency of the kernel object (i.e.,
unit) through offline static analysis on the kernel. Unlike
HFL, however, it still suffers because they overlook the value
flow caused by the dependency, going to/coming from syscall
arguments (line 13 and 21). As a result, the execution likely
terminates at line 25 due to inconsistent value (i.e., VAL)
between the two ioctl’s arguments.

A code snippet in Figure 15 assumes that a syscall argument
arg is structured in a nested format whose size is determined
by data.len at runtime. To reach the deepest code path,
HFL identifies such a nested format by observing the function
invocation at line 11 and 15, and successfully constructs the
required structure with a valid size. Although DIFUZE [16]
attempts to retrieve such nested structure using static type
inference, it eventually fails as the type of the pointer member
remains unknown at static time (line 2).

13

1 struct ppp_option_data {
2 __u8 __user *ptr; // unknown typed inner buffer
3 __u32 len;
4 int transmit;
5 };
6 int ppp_set_compress(struct ppp *ppp, unsigned long arg)
7 {
8 struct ppp_option_data data;
9

10 // inferred buffer layout: {..|..|..}
11 if (copy_from_user(&data, (void __user *)arg, sizeof(data)))
12 goto out;
13 ...
14 // inferred buffer layout: {..|..|ptr} --> {...}
15 if (copy_from_user(ccp_opt, (void __user *)data.ptr, data.len))
16 goto out;
17 ...
18 }

Fig. 15: Two-layered nested argument in PPP driver.

VII. RELATED WORK

Traditional Kernel Fuzzing. For software testing, numerous
research projects have been working on random fuzz testing
due to its efficiency and effectiveness [22, 26, 36, 38, 44, 52].
Trinity [27] and Syzkaller [46] are popular coverage-guided
system call fuzzers, targeting the Linux kernel. A recent kernel
fuzzer, IMF [24] aims to infer kernel system states by keeping
track of system call traces along with type information. Such
syscall trace-based inference has limitations in understanding
the true dependencies inside the kernel. Taking one step further,
Moonshine [33] is particularly focusing on retrieving internal
kernel dependencies through static analysis. However, such
statically collected traces suffer from false-positive issues, so
it is difficult to reason about internal system dependencies
correctly. Compared to these, HFL is able to distinguish true
dependencies through the validation during the kernel execution.
DIFUZE [16] employs static analysis to effectively fuzz device
drivers in the Android kernel. Although it is effective in a
specific domain, it is unable to be applied to dynamically
loaded modules and challenging to generalize. kAFL [40] aims
to support a fuzzing framework targeting various (including
closed-source) kernels, particularly supporting a hardware-
assisted code coverage measurement. HFL, on the other hand,
neither relies on imprecise static analysis results nor requires
the hardware support. Periscope [43] devises a device driver
fuzzer that is not related to system calls, but mutating input
space over I/O bus. Razzer [26] designs a combination scheme
of static and dynamic testing to effectively reach the points
where race bugs potentially occurs, then verifying true bugs.
Unlike HFL, however, those are difficult to be generalized due
to manual efforts for source code modification or limited scope
of analysis.

Symbolic Testing. There also have been a large body of
researches on symbolic execution [8, 11, 12, 14, 15, 20, 23,
37, 41, 42]. In particular, most of which try to overcome its
known weakness, state explosion. CAB-Fuzz [28] is designed
to use per-function concolic execution and edge case priority to
make it scalable. Similarly, UC-KLEE [37] performs symbolic
execution on individual functions rather than program entry
points, and filters out falsely catched crashes in a certain
manner. However, their effort to recover pre-context using
real app execution is limited to certain cases, and difficult to be
generalized whereas performing post-process validation seems

to work fine, but still yields false results.

Hybrid Fuzzing. Given their properties of fuzzing and
symbolic testing, some of research have studied to benefit
from both of them [32, 34, 44, 51, 53]. The early work
of which [32, 34, 44] introduces and demonstrates such a
powerful combination of the two schemes, highlighting its
good performance in bug-finding and code coverage. More
recent work places their focus on building more efficient hybrid
fuzzing. In particular, they strive to maximize the performance
of expensive symbolic engine [51] or boost symbolic execution
utilization by stoping it from being idle [53]. In fact, all of them
share the same insight as HFL in terms of collaboration of
random and symbolic testing. The key difference is such hybrid-
based work focuses only on application level testing, thus they
cannot address kernel specific challenges, which completely
hinder in-depth code block exploration in the kernel. With
respect to exploring narrow-condition branches, laf-intel [25]
is yet another method to tackle them. Without the help of the
symbolic checking, it is capable of satisfying such a branch
condition by breaking it down into multiple smaller branches,
each of which is relatively easy to explore. We believe laf-intel
is complementary to HFL, as each can benefit another in terms
of solving narrow-condition branches.

Static Analysis for OS Kernels. Static analysis techniques
have been extensively used to discover various types of
vulnerabilities in kernels [19, 31, 47, 48, 50]. Dr.Checker [31]
achieves soundy static analysis using the inter-procedural
approach in a limited set of kernel drivers. K-miner [19]
partitions the entire Linux kernel based on system call entry
points, and analyzes the partitioned components separately.
By tracking the flow of the code, it detects vulnerabilities
with multiple analysis passes. However, unlike HFL, such
a partitioned analysis does not fully understand relationships
between system calls, making global analysis difficult. Research
work [47, 50] statically analyze the code to find double-fetch
bugs in the Linux kernel, whereas LRSan [48] specifically
checks security-sensitive variables that can be modified after
the first security checking. Compared with HFL, all of these
techniques suffer from false positives, which would require
manual efforts to identify true positive ones.

VIII. DISCUSSION AND LIMITATIONS

Kernel’s Non-deterministic Behavior in Performing Sym-
bolic Analysis. In our study, we observed non-deterministic
program behaviors while performing symbolic analysis (see
§B). This is in fact caused by instances of structs located in
the kernel space, preventing the program path from reaching
hard-constraint branch points (remaining unexplored). Since
HFL is currently interested in fuzzing kernel space via syscall
APIs, we are unable to dictate such kernel instances directly.
Nonetheless, we expect to handle this as HFL proceeds to see
them in continuing code explorations.

Commercial Off-the-shelf Kernels. A few components of
HFL (e.g., kernel translation) are deployed during the compi-
lation phase. For this reason, for now, HFL does not support
source-free operating systems such as Windows. We believe
this could be overcome by adopting a sort of runtime analysis
technique (e.g., instrumentation) with extra efforts in the future.

14

IX. CONCLUSION

This paper presents HFL, a hybrid fuzzer for testing
kernels. We identified three key challenges that undermine the
efficiency of both fuzzing and symbolic executor, and design
HFL to resolve such challenges. As a result, HFL allows
us to bring hybrid fuzzing into kernel space effectively and
efficiently. Our evaluation result shows that HFL outperforms
each of the approaches, represented by Moonshine, Syzkaller,
TriforceAFL, etc, by achieving a higher coverage than them.
More importantly, in testing recent Linux kernels with HFL,
we found 24 previously unknown vulnerabilities and made/is
making them fixed in future releases.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
insightful comments which significantly improved the final
version of this paper. This work was partly supported by the
National Research Foundation (NRF) of Korea grant funded by
the Korea government(MSIT) (No. NRF 2019R1C1C1006095).

REFERENCES

[1] Https://kiwi.cs.purdue.edu/hfl/.
[2] “addr2line,” 2018, https://sourceware.org/binutils/docs/

binutils/addr2line.html.
[3] “Gcc,” 2018, https://gcc.gnu.org.
[4] “Kcov,” 2018, https://www.kernel.org/doc/html/v4.15/dev-

tools/kcov.html.
[5] “Kernel address sanitizer,” 2018,

https://github.com/google/kasan/wiki.
[6] “Kernel memory sanitizer,” 2018,

https://github.com/google/kmsan.
[7] “Undefined behavior sanitizer,” 2018,

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html.
[8] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley,

“Enhancing symbolic execution with veritesting,” in Pro-
ceedings of the 36th International Conference on Software
Engineering (ICSE), Hyderabad, India, May–Jun. 2014.

[9] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and
I. Finocchi, “A survey of symbolic execution techniques,”
ACM Computing Surveys (CSUR), vol. 51, no. 3, p. 50,
2018.

[10] R. Baldoni, E. Coppa, D. C. DâĂŹelia, C. Demetrescu,
and I. Finocchi, “A survey of symbolic execution tech-
niques,” ACM Computing Surveys (CSUR), vol. 51, no. 3,
pp. 1–39, 2018.

[11] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs.” in Proceedings of the 8th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA, Dec. 2008.

[12] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler,
“Exe: A system for automatically generating inputs of
death using symbolic execution,” in Proceedings of the
13th ACM Conference on Computer and Communications
Security (CCS), Alexandria, VA, Oct.–Nov. 2006.

[13] C. Cadar and K. Sen, “Symbolic execution for software
testing: three decades later,” Communications of the ACM,
vol. 56, no. 2, pp. 82–90, 2013.

[14] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing mayhem on binary code,” in Proceedings
of the 33rd IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2012.

[15] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A
platform for in-vivo multi-path analysis of software
systems,” Acm Sigplan Notices, vol. 46, no. 3, pp. 265–
278, 2011.

[16] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao,
C. Kruegel, and G. Vigna, “Difuze: Interface aware
fuzzing for kernel drivers,” in Proceedings of the 24th
ACM Conference on Computer and Communications
Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[17] EPFL, “S2e: The selective sym-
bolic execution platform,” 2018,
http://s2e.systems/docs/Howtos/Coverage/index.html.

[18] L. Foundation, “llvmlinux,” 2017,
https://wiki.linuxfoundation.org/llvmlinux.

[19] D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi, “K-
miner: Uncovering memory corruption in linux,” in
Proceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2018.

[20] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage:
whitebox fuzzing for security testing,” Queue, vol. 10,
no. 1, p. 20, 2012.

[21] I. Google, “ClusterFuzz: All Your Bug Are Belong to Us,”
2019, https://github.com/google/clusterfuzz.

[22] N. Group, “Triforce linux syscall fuzzer,” 2016,
https://github.com/nccgroup/ TriforceLinuxSyscallFuzzer.

[23] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos,
“Dowsing for overflows: A guided fuzzer to find buffer
boundary violations.” in Proceedings of the 22th USENIX
Security Symposium (Security), Washington, DC, Aug.
2013.

[24] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,”
in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, Oct.–
Nov. 2017.

[25] Intel, 2016, https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-
transformations/.

[26] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin,
“Razzer: Finding kernel race bugs through fuzzing,” in
Proceedings of the 38th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2019.

[27] D. Jones, “Trinity: Linux system call fuzzer,” 2011,
https://github.com/kernelslacker/trinity.

[28] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and
T. Kim, “Cab-fuzz: practical concolic testing techniques
for cots operating systems,” in Proceedings of the 2017
USENIX Annual Technical Conference (ATC), Santa Clara,
CA, Jul. 2017.

[29] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,

15

“Evaluating fuzz testing,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 2123–2138.

[30] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and
A. Tiu, “Steelix: program-state based binary fuzzing,” in
Proceedings of the 16th European Software Engineering
Conference (ESEC) / 25th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE),
Paderborn, Germany, Sep. 2017.

[31] A. Machiry, C. Spensky, J. Corina, N. Stephens,
C. Kruegel, and G. Vigna, “Dr.checker: A soundy analysis
for linux kernel drivers,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 1007–1024.

[32] R. Majumdar and K. Sen, “Hybrid concolic testing,” in
Proceedings of the 29th International Conference on
Software Engineering (ICSE), Minneapolis, MN, May
2007.

[33] S. Pailoor, A. Aday, and S. Jana, “Moonshine: Optimiz-
ing os fuzzer seed selection with trace distillation,” in
Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, USA, Aug. 2018.

[34] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs
via fuzzing and symbolic execution,” School of Computer
Science Carnegie Mellon University, 2012.

[35] J. Pan, G. Yan, and X. Fan, “Digtool: A virtualization-
based framework for detecting kernel vulnerabilities,” in
26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 149–165.

[36] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing
by program transformation.” SP18.

[37] D. A. Ramos and D. R. Engler, “Under-constrained
symbolic execution: Correctness checking for real code.”
in Proceedings of the 24th USENIX Security Symposium
(Security), Washington, DC, Aug. 2015.

[38] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos, “Vuzzer: Application-aware evolutionary
fuzzing,” in Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb.–Mar. 2017.

[39] Rode0day, “Archived Results: Final Scores for Rode0day-
18.10,” 2018, https://rode0day.mit.edu/results/4.

[40] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel,
and T. Holz, “kafl: Hardware-assisted feedback fuzzing
for os kernels,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Canada,
Aug. 2017.

[41] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic
unit testing engine for c,” in ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 5. ACM, 2005, pp.
263–272.

[42] Y. Shoshitaishvili, C. Kruegel, G. Vigna, R. Wang, C. Salls,
N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng
et al., “Sok:(state of) the art of war: Offensive techniques
in binary analysis,” in Proceedings of the 37th IEEE
Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2016.

[43] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Vol-
ckaert, G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz,

“Periscope: An effective probing and fuzzing framework
for the hardware-os boundary,” in Proceedings of the
2019 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[44] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting fuzzing through selective symbolic
execution.” in Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2016.

[45] Y. Sui and J. Xue, “Svf: interprocedural static value-flow
analysis in llvm,” in Proceedings of the 25th International
Conference on Compiler Construction. ACM, 2016.

[46] D. Vyukov, “Syzkaller,” 2015,
https://github.com/google/syzkaller.

[47] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-
Lazaro, “How double-fetch situations turn into double-
fetch vulnerabilities: A study of double fetches in the
linux kernel,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1–16.

[48] W. Wang, K. Lu, and P.-C. Yew, “Check it again: Detecting
lacking-recheck bugs in os kernels,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 1899–1913.

[49] V. M. Weaver and D. Jones, “perf fuzzer: Targeted fuzzing
of the perf event open () system call,” Technical Report
UMAINEVMW-TR-PERF-FUZZER, University of Maine,
Tech. Rep., 2015.

[50] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim, “Precise
and scalable detection of double-fetch bugs in os kernels,”
in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 661–678.

[51] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: a
practical concolic execution engine tailored for hybrid
fuzzing,” in Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, USA, Aug. 2018.

[52] M. Zalewsk, “American fuzzy lop,” 2014,
http://lcamtuf.coredump.cx/afl.

[53] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest
problems my way: Probabilistic path prioritization for
hybrid fuzzing,” in Proceedings of the 2019 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2019.

[54] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and
L. Sun, “Firm-afl: High-throughput greybox fuzzing of
iot firmware via augmented process emulation,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019,
pp. 1099–1114.

APPENDIX

A. Static Dependency Analysis

Table VII presents the result of our static dependency
analysis. From the technical perspective, our approach to
static points-to analysis is brought from that of Razzer [26].
Specifically, we partition kernel source code according to
subsystem classification, and then separately perform the
analysis on each partition. Such a partitioning approach not

16

Category Analysis Size Analysis # Candidate
Target (.bc) Time (h) Pairs

File system fs/ 75 MB 7 110 K
Network net/ 255 MB 90 530 K
Drivers drivers/ 322 MB 83 460 K

TABLE VII: The details of HFL static dependency analysis.

Category #Prog #ProgS #InputS #Input′S
File system 4.6 M 1,526 521 343
Network 5.1 M 2,121 1,225 632
Drivers 5.0 M 2,034 1,472 851

TABLE VIII: The statistics of hybrid-specific feature in the experi-
ment (§VI-B3). Prog and ProgS denote concretely and symbolically
executed programs during the experiment, respectively. InputS are
new input programs produced as a result of the execution of ProgS .
Of which, Input′S are the ones actually contributing new execution
path.

only allows us to alleviate significant analysis overhead, but fits
each partition into each syscall category properly. Considering
these factors, we believe this effectively identifies potential
dependencies that suit our purpose although it may lead to
false negative outcomes due to missing dependencies across
partitions. Since such analysis is one time task in our work,
we note its non-trivial overhead does not affect the overall
performance of HFL.

B. Statistics of Hybrid-Fuzzing

In Table VIII, we illustrate more detailed analysis of the
hybrid-specific feature in the coverage experiment (§VI-B3). In
the table, Prog and ProgS indicate concretely and symbolically
executed programs, respectively. InputS in the fourth column
represents input programs that are newly generated as a result
of symbolic execution. One notable observation is that out of
symbolically executed programs (ProgS), non-negligible cases
do not yield new inputs although they are supposed to trigger
tight branches on the particular path. This is mostly caused by
non-deterministic states of internal kernel instances which are
not under our control. In the fifth and sixth columns, as expected,
the new input programs (InputS) not only contribute new code
paths (i.e., Input′S), but also have significant influence on the
future input generation, then lead to coverage improvement.
This stems from that such new inputs would be pushed into
the corpus and reused as a source of mutation, thereby helping
trigger other new paths.

Crash type Description Kernel

integer overflow kernel BUG at fs/xfs/xfs_message.c 4.19-rc8
integer overflow kernel BUG at fs/btrfs/ctree.c 4.17.19
integer overflow kernel BUG at net/core/skbuff.c 4.19-rc8
task hang Undefined behaviour in fs/open.c 5.0-rc2
task hang WARNING in __alloc_pages_slowpath 4.18.20
task hang task hung in truncate_inode_pages_range 4.20.0
task hang WARNING in __ext4_handle_dirty_metadata 4.19-rc2
task hang WARNING in usb_submit_urb 4.19-rc2
task hang unable to handle kernel paging request in alloc_vmap_area 4.18-rc4
task hang Undefined behaviour in net/core/sock.c 4.20.2
task hang task hung in blk_mq_get_tag 4.17.19
task hang task hung in __fdget_pos 4.17.19
task hang task hung in __flush_work 5.0-rc2

TABLE IX: List of 13 known vulnerabilities.

Component Tool Lines of Code

Fuzzer syzkaller 840 (Go)
Symbolic Analyzer s2e-2.0 420 (C++)
Kernel Translator gcc-7.3 820 (C)
Coordinator - 480 (Python)

TABLE X: Modifications of the tools used in HFL. Note that
coordinator acts as a glue in communcation between fuzzer and
symbolic analyzer (e.g., user program transformation).

17

	Introduction
	Background
	Motivation
	Challenges in Applying Hybrid Fuzzing to Kernel
	Indirect Control Transfer Determined by Input
	Internal System States
	Nested Syscall Arguments

	Design
	Generic Hybrid Fuzzing Design
	Converting Control-Flow from Indirect to Direct
	Consistent System State via Syscall Sequence Inference
	Nested Syscall Argument Retrieval

	Implementation
	Evaluation
	Experimental Setup
	Overall Effectiveness
	Vulnerabilities
	Efficiency
	Overall Coverage
	Case Study

	Per-feature Effectiveness
	Per-feature Coverage
	Per-feature Case Studies

	Related Work
	Discussion and Limitations
	Conclusion
	Appendix
	APPENDICES
	Static Dependency Analysis
	Statistics of Hybrid-Fuzzing

