
FirmAE: Towards Large-Scale Emulation
of IoT Firmware for Dynamic Analysis

Mingeun Kim1, Dongkwan Kim2, Eunsoo Kim2, Suryeon Kim3,
Yeongjin Jang4, and Yongdae Kim2

1The affiliated institute of ETRI
2KAIST

3Ministry of National Defense
4Oregon State University

IoT Devices are in danger
 34.2 billion embedded devices will be in use in 2025*

– Wireless routers, IP cameras, ...

 IoT Devices are an alluring target
– Satori botnet using 0-days (Dec. 2017)
– Crypto mining botnet (May. 2018)
– ECHOBOT, a variant of Mirai (Dec. 2019)
– New Mirai variant targeting Comtrend routers (July 2020)

 Many IoT devices are exposed to the Internet, especially their web interfaces
– Shodan, ZoomEye
– Over 30 exploits used in ECHOBOT target web services
– Web service RCE (CVE-2020-10173) used for Mirai variants

2 *https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

Analyzing device firmware
 Statically analyze device firmware Many false positives

– Crack default passwords or find backdoor strings: Costin et al. (SEC ‘14), ...
– Symbolic execution to find vulnerabilities: FIE (SEC’13), Firmalice (NDSS’15), …

 User-level emulation
– Emulate only the target program, not the entire environment
– Utilize "chroot" on the firmware filesystem: Costin et al. (AsiaCCS ’16)
Cannot reflect system-wide behavior (e.g., device initialization)

 System-level emulation
– Emulating the entire environment, including the kernel

 Firmadyne (NDSS’16), FirmPin (BLACKHAT US’18), Firm-AFL (SEC’19), …

 Many approaches take this and analyze vulnerabilities

 Modeling accurate peripherals
– MMIO, GPIO, DMA: Pretender (RAID’19), HALucinator (SEC’20), P2IM (SEC’20), …
 Promising, but immature to support large-scale analysis

3

Analyzing device firmware
 Statically analyze device firmware Many false positives

– Crack default passwords or find backdoor strings: Costin et al. (SEC ‘14), ...
– Symbolic execution to find vulnerabilities: FIE (SEC’13), Firmalice (NDSS’15), …

 User-level emulation
– Emulate only the target program, not the entire environment
– Utilize "chroot" on the firmware filesystem: Costin et al. (AsiaCCS ’16)
Cannot reflect system-wide behavior (e.g., device initialization)

 System-level emulation
– Emulating the entire environment, including the kernel

 Firmadyne (NDSS’16), FirmPin (BLACKHAT US’18), Firm-AFL (SEC’19), …

 Many approaches take this and analyze vulnerabilities

 Modeling accurate peripherals
– MMIO, GPIO, DMA: Pretender (RAID’19), HALucinator (SEC’20), P2IM (SEC’20), …
 Promising, but immature to support large-scale analysis

3

Is this sufficient to check
vulnerabilities on a large-scale?

 QEMU for a virtual environment
 Prebuilt kernel for hooking system calls (with Kprobe)
 Emulating target firmware twice

– Collect system call logs for network interface setup

 NVRAM* library to wrap related functions

Firmadyne: state-of-the-art firmware emulator
Input

Firmware Filesystem

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Pre-Emulation Final Emulation

*NVRAM (Non-Volatile RAM) stores configuration key-value pairs5

 QEMU for a virtual environment
 Prebuilt kernel for hooking system calls (with Kprobe)
 Emulating target firmware twice

– Collect system call logs for network interface setup

 NVRAM* library to wrap related functions

Firmadyne: state-of-the-art firmware emulator
Input

Firmware Filesystem

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Pre-Emulation Final Emulation

Firmadyne can emulate only 16% of
firmware images for web services

*NVRAM (Non-Volatile RAM) stores configuration key-value pairs6

7

Practical large-scale emulation for analyzing IoT devices
 Web services, typical attack targets

Randomness of embedded device implementation
 Difficulty of catching precise failure causes
 No need to be accurate for dynamic analysis
 Subtle efforts can address many failure cases
 Once implemented, such experience can build up
 Successful emulation of 892 firmware images!

Motivating example 1: CVE-2014-3936
 Target

– D-Link DIR-505L

 Symptom
– Fails to configure network connection

 Missing bridge interface to communicate with the host

 Possible causes
– Access to unsupported peripherals
– Missing NVRAM configuration value

 How to address
– Run a single command that links the bridge interface

8

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

D-Link
DIR-505L

CVE-2014-3036
Test

brctl addif br0 eth0

Firmadyne

Motivating example 2: CVE-2017-5521
 Target

– NETGEAR R6250

 Symptom
– Fails to boot

 Diverse initializing program paths

– Fails to run the web service
 Missing IOCTL functions

 Possible causes
– Incorrect initializing program path
– Missing kernel module

 How to address
– Change the initializing program path to “/sbin/preinit”
– Add IOCTL wrappers

9

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

NETGEAR
R6250

CVE-2017-5521
Test

Boot /sbin/preinit

Handle IOCTL

Firmadyne

Our approach
 Key observation

– Emulating high-level behaviors can be sufficient to conduct dynamic analysis
– Relatively easy and does not need to address the exact causes of emulation failures

 Arbitrated emulation
– Ensures high-level conditions to run target programs by injecting interventions*

– Focuses on emulating target program to conduct dynamic analysis

 Goal
– Emulating web services in firmware for dynamic analysis (i.e., bug hunting) in a large scale
– Targeting wireless routers and IP-cameras

 Popular attack targets and still have many vulnerabilities

 High-level conditions to analyze web services
– A device should be booted without kernel panic
– Its network should be reachable from the host
– Its internal web services should be available

10 *Intervention: an intentionally added action

 Boot environment
 Network configuration
 Library, device driver, etc.

Check violation cases

FirmAE overview

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization Arbitration Systemization Dynamic Analysis

Emulation
DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

11

FirmAE overview

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization Arbitration Systemization Dynamic Analysis

Emulation
DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

12

Dataset building
 Firmware collection

– Collect firmware from vendor servers
 Customized scraper based on Firmadyne’s + Manual download

– Extract the filesystem
 Binwalk: Signature-based file search

– Target architecture: ARMel, MIPSel, MIPSeb

 Dataset (1124 images)
– AnalysisSet (526 images)

 Old images from 3 vendors to develop arbitrations

– LatestSet (553 images)
 Latest images* from 8 vendors to check the effectiveness of arbitrations

– CamSet (45 images)
 Latest images* to evaluate arbitrations in another, yet similar domain

13

Dataset Vendor Images

AnalysisSet

D-Link 179

TP-Link 73

NETGEAR 274

Sub Total 526

LatestSet

D-Link 58

TP-Link 69

NETGEAR 101

TRENDnet 106

ASUS 107

Belkin 37

Linksys 55

Zyxel 20

Sub Total 553

CamSet

D-Link 26

TP-Link 6

TRENDnet 13

Sub Total 45
Total 1124

*Latest firmware images are checked as of Dec. 2018

FirmAE - Arbitration

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization Arbitration Systemization Dynamic Analysis

Emulation
DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

Analyze emulation failure
cases and resolve them

with arbitrations

14

Arbitration summary

Type High-level Condition Violation Intervention

Boot
Improper booting sequence Identify the initializing program from the kernel of firmware image

Missing filesystem structure Make necessary directories by extracting used paths from binaries

Network

Invalid IP alias handling Fix routing rule to properly handle IP aliasing

No network information Add sequence of commands to set up default network interface

Insufficient support of multiple network
interfaces in QEMU ARM

Set a single network interface on QEMU ARM machine

Insufficient VLAN setup Fix VLAN configuration on the host system

Blocked by rules in iptables Flush the iptables rules

NVRAM
Unknown NVRAM default files

1. Search files that contain key names identified from pre-emulation
2. Initialize NVRAM with found default files

Crash due to returned NULL pointer Return an empty string instead of NULL pointer

Kernel
Insufficient support of kernel module

1. Supplement IOCTL handler in the kernel, it can be different by architecture
2. For generalization can be abstracted in LD_PRELOAD library as one function

Improper kernel version
Upgrade MIPS kernel version to the 4.1, but set ‘CONFIG_COMPAT_BRK’ to
prevent old libc crashes

Others

Unexecuted web servers Forcibly execute the web servers with appropriate configuration files

Timeout issues Increase emulation timeout (Pre: 240s, Final: 360s)

Lack of tools for emulation Add full-featured busybox to deal with insufficient command in firmware

15

Side-effects of arbitration
 Arbitrations may result in different behaviors against the original hardware

– It has only slight effect on the security analysis of web services
– We indeed found several vulnerabilities

 Examples
– Returning empty string from NVRAM

 As most values from NVRAM are used for configuration, this may direct the program to use the default value
 Provides more chance to analyze programs than crashing due to NULL dereference

– Changing network configuration
 The network configuration can be different from the original environment
 However, most vulnerabilities are independent to the network configuration (i.e., IP Address)

16

FirmAE - Systemization

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization Arbitration Systemization Dynamic Analysis

Emulation
DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

Fully-automate and
parallelize with containers

17

Systemization
 Full automation

– Apply interventions
 Analyze kernel and filesystem information

– Check network and web server
 Use "ping" and "curl"

– Further analyze vulnerabilities

 Parallelization with containers
– Make entire firmware emulation/analysis abstract
– Build an independent network environment

 Handle network collision from the hard-coded IP addresses

Host system

GET / HTTP/1.1
Host: 192.168.0.1

Container1

Guest system 2
(emulated firmware)

IP 192.168.0.1

GET / HTTP/1.1
Host: 192.168.0.1

Container2

Host system

Guest system 1
(emulated firmware)

IP 192.168.0.1

GET / HTTP/1.1
Host: 192.168.0.1

Guest system 2
(emulated firmware)

IP 192.168.0.1

Guest system 2
(emulated firmware)

IP 192.168.0.1

IP collision

18

Emulation results
 Emulation check

– Network reachability
– Web service availability

 Results (vs Firmadyne)
– AnalysisSet

 16.92% 91.83%

– LatestSet
 16.64% 69.08%

– CamSet
 4.44% 60.00%

– Total
 16.28% 79.36%

Firmadyne FirmAE

Dataset Vendor Images Net Web Net Web

AnalysisSet

D-Link 179 55 (30.73%) 54 (30.17%) 177 (98.88%) 167 (93.30%)

NETGEAR 73 26 (35.62%) 5 (6.85%) 73 (100%) 59 (80.82%)

TP-Link 274 86 (31.39%) 30 (10.95%) 259 (94.52%) 257 (93.80%)

Sub Total 526 167 (31.75%) 89 (16.92%) 509 (96.77%) 483 (91.83%)

LatestSet

D-Link 58 18 (31.03%) 17 (29.31%) 54 (93.10%) 48 (82.76%)

TP-Link 69 33 (47.83%) 10 (14.49%) 69 (100%) 54 (78.26%)

NETGEAR 101 30 (29.70%) 7 (6.93%) 92 (91.09%) 79 (78.22%)

TRENDnet 106 35 (33.02%) 23 (21.70%) 91 (85.85%) 63 (59.43%)

ASUS 107 27 (25.23%) 25 (23.36%) 63 (58.88%) 62 (57.94%)

Belkin 37 2 (5.41%) 2 (5.41%) 30 (81.08%) 22 (59.46%)

Linksys 55 13 (23.64%) 8 (14.55%) 48 (87.27%) 44 (80.00%)

Zyxel 20 3 (0.15%) 0 (0%) 18 (0.90%) 10 (50.00%)

Sub Total 553 161 (29.11%) 92 (16.64%) 465 (84.09%) 382 (69.08%)

CamSet

D-Link 26 0 (0%) 0 (0%) 19 (73.08%) 17 (65.38%)

TP-Link 6 0 (0%) 0 (0%) 6 (100%) 0 (0%)

TRENDnet 13 2 (15.38%) 2 (15.38%) 10 (76.92%) 10 (76.92%)

Sub Total 45 2 (4.44%) 2 (4.44%) 35 (77.78%) 27 (60.00%)

Total 1124 330 (29.36%) 183 (16.28%) 1009 (89.77%) 892 (79.36%)

19

Effectiveness of each arbitration
 How to check?

– Remove each arbitration from full system
– Check with web service availability

 Results
– Boot & Network

 30% affected

– NVRAM (the most effective)
 35% affected

– Kernel
 4.88% affected

– Other
 22.35% affected

 All arbitrations are necessary!

20

FirmAE - Dynamic Analysis

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization Arbitration Systemization Dynamic Analysis

Emulation
DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

Dynamically analyze and
find vulnerabilities with

PoCs and a fuzzer

21

Conducting dynamic analysis
 For the emulated web services,

– Initialize webpages by clicking HTML buttons or calling JavaScript functions with Selenium
– Collect website information from the filesystem
– Perform dynamic analysis

 1-day analysis: RouterSploit (Known PoCs like Metasploit) + Customized PoC
 0-day analysis: Our simple fuzzer targets command injection and buffer overflow

 Customized syscall logs
– Firmadyne's prebuilt kernel significantly helped analyzing the bugs

 Analyses to show the emulation indeed works!
– 1-day analysis, vs Firmadyne (with AnalysisSet)
– 1-day analysis, on latest images (with LatestSet)
– 0-day analysis, on latest images (with LatestSet)

 CVE hunting!

22

1-day analysis results on AnalysisSet (vs Firmadyne)

 Is FirmAE effective to reproduce vulnerabilities?

Vulnerability
Category

Firmadyne FirmAE

of POC # of Images (Unique) # of Images (Unique)

Information leak 2 0 (0) 17 (17)

Command injection 9 10 (6) 152 (65)

Password disclosure 2 4 (3) 146 (99)

Authentication bypass 2 0 (0) 5 (5)

Total 15 14 (9) 320 (128)

23

1-day and 0-day analysis results on LatestSet
 Is FirmAE effective to find new/unpatched vulnerabilities?

Type Vulnerability Category # of Vulns # of Devices

1-day

Information leak in PHP 1 19
Information leak in CGI 1 13
Command injection in UPnP 2 13
Command injection in SOAP CGI 2 12
Command injection in HNAP 1 3
Command injection with backdoor
(32764)

2 3

Path traversal 2 9
Sub Total 11 72

0-day

Command injection in HNAP 6 13
Command injection in CGI 1 3
Buffer overflow in HNAP 1 1
Buffer overflow in CGI 4 6

Sub Total 12 23
Total 23 95

24

Responsible disclosure
 D-Link

– HNAP (Command injection, Buffer overflow)
 SetClientInfoDemo – Deprecated page, but can be identified from filesystem
 All vulnerabilities are patched by the vendor

 ASUS
– BOF: Hall of fame (Dec 2019)

 Reported on Apr 2019
 Confirmed on Jan 2020

 Belkin
– Buffer overflow (P1, 40pts from Bugcrowd)
– Two years passed, no more progress :(

 For more details
– https://github.com/pr0v3rbs/CVE

25

https://github.com/pr0v3rbs/CVE

Discussion
 Improving emulation rates

– Developing other arbitration techniques
– Defining more NVRAM default values and IOCTL functions
– Investigating other devices types such as Network Attached Storage (NAS)
– Adopting promising peripheral modeling techniques

 Applying promising analysis techniques
– Static + Dynamic analysis
– Targeting other services

 UPNP, SOAP-CGI, DHCP, and so on

 Developing a honeypot
– Honware (Vetterl et al., Electronic Crime Research`19)

26

Conclusion
 What we have done

– Proposed arbitrated emulation and investigated failure cases
– Developed its prototype, FirmAE
– Boosted emulation rate from 16.28% (Firmadyne's) to 79.36% (FirmAE) for 1,124 devices
– Found 23 new bugs (11 1-days and 12 0-days) affecting 95 unique latest devices

 Lessons learned
– Many failure cases can be easily resolved by arbitrating the high-level behaviors of firmware
– This is sufficient for dynamic analysis
– Emulating diverse embedded devices is challenging, which requires manual efforts

 To support community, we release our source code:
– https://github.com/pr0v3rbs/FirmAE

27

https://github.com/pr0v3rbs/FirmAE

28

rla5072@nsr.re.kr

	FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis
	IoT Devices are in danger
	Analyzing device firmware
	Analyzing device firmware
	Firmadyne: state-of-the-art firmware emulator
	Firmadyne: state-of-the-art firmware emulator
	Practical large-scale emulation for analyzing IoT devices� Web services, typical attack targets�� Randomness of embedded device implementation� Difficulty of catching precise failure causes� No need to be accurate for dynamic analysis� Subtle efforts can address many failure cases� Once implemented, such experience can build up� Successful emulation of 892 firmware images!
	Motivating example 1: CVE-2014-3936
	Motivating example 2: CVE-2017-5521
	Our approach
	FirmAE overview
	FirmAE overview
	Dataset building
	FirmAE - Arbitration
	Arbitration summary
	Side-effects of arbitration
	FirmAE - Systemization
	Systemization
	Emulation results
	Effectiveness of each arbitration
	FirmAE - Dynamic Analysis
	Conducting dynamic analysis
	1-day analysis results on AnalysisSet (vs Firmadyne)
	1-day and 0-day analysis results on LatestSet
	Responsible disclosure
	Discussion
	Conclusion
	슬라이드 번호 28

