
MARDU: Efficient and Scalable Code
Re-randomization

Christopher Jelesnianski Jinwoo Yom Changwoo Min Yeongjin Jang†
Virginia Tech †Oregon State University

Abstract
Defense techniques such as Data Execution Prevention (DEP)
and Address Space Layout Randomization (ASLR) were
role models in preventing early return-oriented programming
(ROP) attacks by keeping performance and scalability in the
forefront, making them widely-adopted. As code reuse attacks
evolved in complexity, defenses have lost touch with prag-
matic defense design to ensure security, either being narrow
in scope or providing unrealistic overheads.

We present MARDU, an on-demand system-wide
re-randomization technique that maintains strong security
guarantees while providing better overall performance and
having scalability most defenses lack. We achieve code shar-
ing with diversification by implementing reactive and scalable,
rather than continuous or one-time diversification. Enabling
code sharing further minimizes needed tracking, patching,
and memory overheads. The evaluation of MARDU shows
low performance overhead of 5.5% on SPEC and minimal
degradation of 4.4% in NGINX, proving its applicability to
both compute-intensive and scalable real-world applications.
CCS Concepts
• Security and privacy → Software security engineering;
Systems security;
Keywords
Code Randomization, Return-Oriented Programming, Code
Reuse, Code Sharing

ACM Reference Format:
Christopher Jelesnianski Jinwoo Yom Changwoo Min Yeongjin

Jang† . 2020. MARDU: Efficient and Scalable Code Re-randomization.
In The 13th ACM International Systems and Storage Conference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’20, June 2–4, 2020, Haifa, Israel
© 2020 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-7588-7/20/06. . . $15.00
https://doi.org/10.1145/3383669.3398280

(SYSTOR ’20), June 2–4, 2020, Haifa, Israel. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3383669.3398280

1 Introduction
Computing remains susceptible to memory vulnerabilities
as few state-of-the-art techniques are practical enough to
be adopted mainstream. While code injection [2, 4, 27] has
been solved with light-weight techniques like Data Execution
Prevention (DEP) [26, 33], stronger adversaries like code
reuse remain to be dealt with efficiently or securely.

Code reuse attacks, like return-oriented programing (ROP)
and ret-into-libc [36], utilize a victim’s code against itself.
ROP leverages innocent code snippets, i.e., gadgets, to con-
struct malicious payloads. Reaching this essential gadget com-
modity versus defending it from being exploited has made an
arms race bewtween attackers and defenders.

Both coarse- and fine-grained ASLR, while light-weight,
are vulnerable to attacks. Whether an entire code regions or
basic blocks layout is randomized in memory, respectively,
a single memory disclosure can result in exposing the entire
code layout, regardless. Execute-only memory (XoM) was
introduced to prevent direct memory disclosures, by enabling
memory regions to be marked with execute-only permissions.
However, code inference attacks, code reuse attacks that work
by indirectly observing and deducing information about the
code layout circumvented these limitations. Various attack
angles revealed that one-time randomization is simply not
sufficient. This fostered the next generation of defenses, such
as CodeArmor [10] and Shuffler [41], introducing continuous
runtime re-randomization to strengthen security guarantees;
they rely on background threads to run randomization and
approximated use of thresholds to proactively secure vulnera-
ble code. Despite being non-intrusive and easily deployable,
these techniques require additional system resources and do
not support code sharing.

Control Flow Integrity (CFI) innovations are in a similar
state, like unrealistic performance tradeoffs or the inability
to scale system-wide relying on background threads for each
thread or process [14, 22]. Compared to randomization, CFI
guards against ROP by strictly guiding control flow to only
legimate destinations via type analysis or offline runtime
analysis. While these may provide stricter enforcement, this
class of techniques have their own set of issues like large
equivalence classes for remaining edge cases.

49

https://doi.org/10.1145/3383669.3398280
https://doi.org/10.1145/3383669.3398280


SYSTOR ’20, June 2–4, 2020, Haifa, Israel C. Jelesnianski et al.

In this paper, we introduce MARDU to refocus defense
technique design, showing that it is possible to embrace core
fundamentals of performance and scalability, while ensuring
comprehensive security guarantees.

MARDU builds on the insight that thresholds, like time in-
tervals [10, 41] and the amount of leaked data [39], are a secu-
rity loophole and a performance shackle in re-randomization;
MARDU does not rely on a threshold in its design. This allows
MARDU to avoid the paradox between security and perfor-
mance. MARDU takes adventage of the event trigger design
and Intel MPK. Using Intel MPK, MARDU provides XoM
protection against both variations of remote and local JIT-
ROP, with negligible overhead. MARDU also combines XoM
with immutable trampolines by covering them from read ac-
cess while decoupling the function entry from its function
body to make it impossible for attackers to infer and obtain
ROP gadgets. Note that immutable code pointer approaches
(e.g., using trampolines and indirection tables) all inherently
share the vulnerability to only full-function reuse (except
TASR [7]). We consider eliminating full-function code reuse
and data-oriented programming [23] to be an orthongal prob-
lem. That being said, MARDU can complement CFI solutions
adding minimal overhead and adding valuable randomization
to make code reuse more difficult.

It is crucial to note that current re-randomization techniques
do not take scalability into consideration. Support for code
sharing has been forgotten, as applying re-randomization
per process counters the principles of memory deduplication.
Additionally, the prevalence of multi-core has excused the
reliance on per-process background threads dedicated to per-
forming compute-extensive re-randomization processes; even
if recent defenses have gained some ground in the arms race,
most still lack effective comprehensiveness in security for the
system resource demands they require in return (both CPU
and memory). MARDU keeps performance and scalability
at its forefront and does not require expensive code pointer
tracking and patching. Furthermore, MARDU does not incur
significant overhead from continuous re-randomization trig-
gered by overconservative time intervals or benign I/O system
calls as in Shuffler [41] and ReRanz [39], respectively. Finally,
MARDU is designed to both support code sharing and not
require the use of any additional system resources (e.g., back-
ground threads as used in numerous works [7, 10, 17, 39, 41]).
To summarize, we make the following contributions:
• ROP attack & defense analysis. Our background §2, de-

scribes current randomization defenses as well as remain-
ing prevalent ROP attacks that challenge current works and
should be addressed. This motivates the innovation that
MARDU brings to improving security, performance, and
scalability of sequent randomization techniques.

• MARDU defense framework. We present the design of
MARDU §4, a comprehensive ROP defense technique capa-
ble of addressing all currently known ROP attacks.

• Scalability and shared code support. To the best of our
knowledge, MARDU is the first framework capable of re-
randomizing shared code throughout runtime. MARDU cre-
ates its own calling convention to both leverage a shadow
stack and minimize overhead of pointer tracking. This call-
ing convention also enables shared code (e.g., libraries) to
be re-randomized by any host process and maintain security
integrity for the rest of the entire system.

• Evaluation & prototype. We have built a prototype of
MARDU and evaluated it §6 with both compute-intensive
benchmarks and real-world applications.

2 Code Layout (Re-)Randomization
Realizing that maintaining fixed layout across crash-probes
still allowed code layout/contents to be indirectly infered by
attackers, re-randomization techniques addressed JIT-ROP
and BROP [7, 10, 17, 19, 31, 39, 41] by continuously shuf-
fling code (and data) at runtime, making information leaks or
code probing useless. Re-randomization techniques can be cat-
egorized into two core design elements: 1) Re-randomization
triggering condition and 2) Code pointer semantics.

Triggering conditions include timing and sensitive system
calls. Techniques have logical reasoning about their thresh-
olds, such as randomizing faster than typical network la-
tency [10, 41] or triggering on known sensitive system calls
such as fork() and write() [7, 31, 39]. These techniques
add unnecessary overhead due to excessive re-randomization
and remain vulnerable to attacks that can be acheived within
smaller timing windows.

Prevailing code pointer semantics include using raw code
addresses, as in ASR3 [19] and TASR [7], where tracking
of code (or all) pointers is required during runtime, which is
compute intensive to update values after re-randomization.
Some defenses have opted to shift this overhead to a back-
ground thread, but this then creates a scalability bottleneck.
Another method is using trampolines; these techniques store
an indirect index [41] or immutable trampoline address, as in
ReRanz [39] as code pointers. Re-randomization only affects
the sensitive code layout skipping expensive code pointer
tracking/updating, leaving the code layout secured. An even
more minimalist pointer semantic is using offsets to code
addresses [10]; this avoids pointer tracking by having an im-
mutable offset from the random base version address to refer
to functions. Randomization here is efficient because only a
single base address is updated. However, both trampolines
and base address offsets share the drawback that leaking code
pointers will reveal an immutable piece of information (func-
tion index/offset) valid across re-randomizations, allows the
attacker to reuse and perform full function reuse.

50



MARDU: Efficient and Scalable Code Re-randomization SYSTOR ’20, June 2–4, 2020, Haifa, Israel

We motivate MARDU presenting two pertinent attack classes
current randomization techniques are suseptible to.
Low-profile JIT-ROP. Existing defenses utilize either timing
thresholds [10, 17, 19, 41], transmitted data amount by output
system calls [39], or crossing of an I/O system call bound-
ary [7] as a trigger for layout re-randomization. However,
low-profile JIT-ROP attacks can exploit pre-defined random-
ization time intervals or carry out an attack without involving
any I/O system call invocations. By bypassing these trigger-
ing conditions, code layout remains unchanged within the
given interval and vulnerable to JIT-ROP.
Code pointer offsetting. Even with re-randomization, tech-
niques might be susceptible to code pointer manipulation if
code pointers are not protected from having arithmetic oper-
ations applied by attackers [7, 10]. Particularly, techniques
directly using code address [7] or code offset [10], could
allow attackers to reach a ROP gadget if the gadget offset
is known beforehand. Ward et al. [40] has recently demon-
strated that this attack is possible against TASR. This attack
essentially shows that maintaining a fixed code layout across
re-randomizations and not protecting code pointers lets at-
tackers perform arithmetic operations over pointers, allowing
access to ROP gadgets.
3 Threat Model and Assumptions
MARDU’s threat model follows that of similar re-randomization
works [7, 10, 41]. We assume attackers can perform arbitrary
read/write by exploiting software vulnerabilities in the victim
program. We also assume all attack attempts are run in a local
machine such that attacks may be performed any number of
times within a short time period (e.g., within a millisecond).

Our trusted computing base includes the OS kernel, the
loadding/linking process such that attackers cannot intervene
to perform any attack before a program starts, and that sys-
tem userspace does not have any memory region that is both
writable and executable or both readable and executable (e.g.,
DEP and XoM are enabled). This includes trusting Intel Mem-
ory Protection Keys (MPK) [24], a mechanism that provides
XoM; attacks targeting hardware (side-channel attacks, e.g.,
Spectre [28], Meltdown [30]) are out of scope.
4 MARDU Design
4.1 Goals
MARDU aims to improve current state-of-the-art defense tech-
niques to enable practical code re-randomization. Our design
goals focus on scalability, performance, and security.
Scalability. Most proposed exploit mitigation mechanisms
overlook the impact of required additional system resources,
such as CPU or memory usage, which we consider a scalabil-
ity factor. This is crucial for applying a defense system-wide,
and is even more critical when deploying the defense in a pay-
as-you-go pricing Cloud. Oxymoron [6] and PageRando [11]

are the only defenses, to our knowledge, that allow code
sharing of randomized code, thus minimizing their memory
footprint. Additionally, most re-randomization defenses [10,
39, 41] require per-process background threads, which not
only cause additional CPU usage but also contention with the
application process, especially as the number of processes in-
creases. Therefore, to apply MARDU system-wide, we design
MARDU to minimize the system resources required.
Performance. Many prior approaches [10, 12, 13, 41] demon-
strate decent runtime performance on average (<10%, e.g.,
<3.2% in CodeArmor); however, they also show a few re-
markably slow cases (i.e., >55%). We design MARDU to run
with an acceptable average overhead (≈5%) with minimal
performance outliers across a variety of application types.
Security. No prior solutions provide a comprehensive de-
fense against existing attacks (see §2). As systems applying
re-randomization are still susceptible to low-profile attacks
and code pointer offsetting attacks, MARDU aims to either de-
feat or significantly limit the capability of attackers to provide
best-effort security against these existing attacks.
4.1.1 Challenges Naively combining the best existing de-
fense techniques is simply not possible due to conflicts in their
requirements. These are the challenges MARDU addresses.
Tradeoffs in security, performance, and scalability. An
example of the tradeoff between security and performance
is having fine-grain ASLR with re-randomization. Although
such an approach can defeat code pointer offsetting, systems
cannot apply such protection because re-randomization must
finish quickly to meet performance goals to also defeat low-
profile attacks. An example of the tradeoff between scalabil-
ity and performance is having a dedicated process/thread for
performing re-randomization. However, this results in a draw-
back in scalability by requiring more CPU time in the entire
system. Therefore, a good design must find a breakthrough to
meet all of aforementioned goals.
Conflict in code-diversification vs. code-sharing. Layout
re-randomization requires diversification of code layout per
process, and this affects the availability of code-sharing. The
status quo is that code sharing cannot be applied to any ex-
isting re-randomization approaches, making defenses unable
to scale to protect many-process applications. Although Oxy-
moron [6] enables both diversification and sharing of code,
it does not consider re-randomization, nor use a sufficient
randomization granularity (page-level).
4.1.2 Architecture We design MARDU to innovate beyond
tradeoffs in security, performance, and scalability aspects. We
introduce our approach for satisfying each aspect below:
Scalability: Sharing randomized code. MARDU manages
the cache of randomized code in the kernel, making it capable
of being mapped to multiple userspace processes, not readable
from userspace, and not requiring any additional memory.

51



SYSTOR ’20, June 2–4, 2020, Haifa, Israel C. Jelesnianski et al.

Scalability: System-wide re-randomization. Since code is
shared between processes in MARDU, per-process randomiza-
tion, which is CPU intensive, is not required; rather a single
process randomization is sufficient for the entire system. For
example, if a worker process of NGINX server crashes, it re-
randomizes upon exit all associated mapped executables (e.g.,
libc.so of all processes, and all other NGINX workers).
Scalability: On-demand re-randomization. MARDU re-
randomizes code only when suspicious activity is detected.
By doing so, MARDU does not rely on per-process back-
ground threads nor re-randomization interval unlike prior re-
randomization approaches. Particularly, MARDU re-randomization
is performed in the context of a crashing process, thereby not
affecting the performance of other running processes.
Performance: Immutable code pointers. These scalability
design decisions also help improve performance. MARDU
neither tracks nor encrypts nor mutates code pointers upon re-
randomization. This minimizes performance overhead, while
other security features (e.g., XoM, trampoline, and shadow
stack) in MARDU ensure a comprehensive ROP defense.
Security: Detecting suspicious activities. MARDU consid-
ers any process crash or code probing attempt as a suspicious
activity. MARDU’s use of XoM makes any code probing at-
tempt trigger process crash and system-wide re-randomization.
Therefore, MARDU counters direct memory disclosure at-
tacks as well as code inference attacks requiring initial code
probing [35, 37]. We use Intel MPK [24] to implement XoM
so MARDU does not impose any runtime overhead unlike
virtualization-based designs.
Security: Preventing code & code pointer leakage. In ad-
dition to system-wide re-randomization, MARDU minimizes
leakage of code and code pointers. Besides XoM, we use three
techniques. First, MARDU applications always go through a
trampoline region to enter into or return from a function. Thus,
only trampoline addresses are stored in memory (e.g., stack
and heap) while non-trampoline code pointers remain hidden.
MARDU does not randomize the trampoline region so that
tracking and patching are not needed upon re-randomization.
Second, MARDU performs fine-grained function-level ran-
domization within an executable (e.g., libc.so) to completely
disconnect any correlation between trampoline addresses and
code addresses. This provides high entropy (i.e., roughly n!
wheren is the number of functions) and unlike re-randomization
approaches that rely on shifting code base addresses [7, 10,
31], MARDU is not susceptible to code pointer offsetting
attacks. Finally, MARDU stores return addresses–precisely,
trampoline addresses for return–in a shadow stack. This makes
stack pivoting practically infeasible.
Design overview. MARDU is composed of compiler and ker-
nel components. The MARDU compiler enables trampolines
and a shadow stack to be used. The compiler also generates

%rbp PC-relative addresses that will be patched by kernel at randomization.

foo_ret0

foo

# Call trampoline
foo_call_tr:
   jmp   foo

# Return trampoline
foo_ret0_tr:
   sub   $0x8 ,  %rbp
   jmp   foo_ret0

bar

# Call trampoline
bar_call_tr:
   jmp   bar

bar:
   # ...
   # Instrumented ‘ret’
   jmp  * %gs : 0x0 ( %rbp )

bar_call_tr

foo_ret0_tr

foo:
   # ...
   # Instrumented ‘call bar’
   # - push return trampoline
   # address to shadow stack
   add   $0x8 ,  %rbp
   lea   foo_ret0_tr ,  %rax
   mov   %rax ,  %gs : 0x0 ( %rbp )
   # - jump to the trampoline
   jmp   bar_call_tr
foo_ret0:
   # ...

   # Instrumented ‘ret’
   # - jump to the return
   # trampoline in shadow stack
   jmp  * %gs : 0x0 ( %rbp )

Source code Trampoline Code

1

2

3

4

5

%gs Base address of a shadow stack %rbp Stack top index of a shadow stack

%rbp Code memory regions protected by eXcute-only Memory (XoM)

Exposed pointer

void   foo () {
  /* … */
 bar();
  /* … */
}

void   bar () {
  /* … */
}

R

R R

Figure 1: Illustrative example executing a MARDU-compiled
function foo(), which calls a function bar() and then returns.

and attaches metadata to binaries for efficient patching. Mean-
while, the MARDU kernel is responsible for choreographing
the runtime of a MARDU enabled executable.
4.2 MARDU Compiler
MARDU compiler generates a binary able to 1) hide its code
pointers, 2) share its randomized code among processes, and
3) run under XoM. To this end, MARDU uses its own calling
convention using a trampoline region and shadow stack.

4.2.1 Code Pointer Hiding Trampoline. MARDU hides code
pointers without needing costly runtime tracking. To accom-
plish this we split a binary into two regions in process mem-
ory: trampoline and code regions (as shown in Figure 1 and
Figure 2). A trampoline is an intermediary call site that moves
control flow securely to/from a function body, protecting the
XoM hidden code region. There are two kinds of trampolines:
call trampolines are responsible for forwarding control flow
from an instrumented call to the code region function entry,
while return trampolines are responsible for returning control
flow semantically to the caller. Each function has one call
trampoline to its function entry, and each call site has one
return trampoline returning to the caller. Since function call
trampoline addresses are stationary, MARDU does not need
to track code pointers upon re-randomization.
Shadow stack. Unlike the x86 calling convention using
call/ret to store return addresses on the stack, MARDU in-
stead stores all return addresses in a shadow stack and leaves
data destined for the regular stack untouched. Effectively, this
protects all backward-edges. A MARDU call pushes a return
trampoline address to the shadow stack and jumps to a call
trampoline; an instrumented ret directly jumps to the return
trampoline address at the current top of the shadow stack.

52



MARDU: Efficient and Scalable Code Re-randomization SYSTOR ’20, June 2–4, 2020, Haifa, Israel

Running example. Figure 1 is an example of executing a
MARDU-compiled function foo(), which calls a function
bar(). Every function call and return goes through trampo-
lines that store the return address to a shadow stack. The body
of foo() is entered via its call trampoline 1 . Before foo()
calls bar(), the return trampoline address is stored to the
shadow stack. Control flow then jumps to bar()’s trampoline
2 , which will jump to the function body of bar() 3 . bar()
returns to the address in the top of the shadow stack, which is
the return trampoline 4 . Finally, the return trampoline returns
to the instruction following the call in foo() 5 .
4.2.2 Enabling Code Sharing among Processes
PC-relative addressing. The key challenge here is how

to incorporate PC-relative addressing with randomization
so that code can be shared amongst processes. MARDU ran-
domly places code (at function granularity) while trampoline
regions are stationary. This means any code using PC-relative
addressing must be correspondingly patched once its random-
ized location is decided. In Figure 1, all jump targets between
the trampoline and code, denoted in yellow rectangles, are PC-
relative and must be patched. All data addressing instructions
(e.g., accessing global data, etc.) must also be patched.
Fixup information for patching. PC-relative addressing
makes it necessary to track these instructions to patch them
throughout runtime. To make patching simple and efficient,
MARDU compiler generates metadata into the binary describ-
ing exact locations for patching via their file-relative offset;
this metadata is then used to adjust PC-relative offsets for
those locations as needed (see Figure 2). The overhead of run-
time patching is negligible because MARDU avoids “stopping
the world” to maintain internal consistency compared to other
approaches, putting the burden on the crashed process instead.
We elaborate on the patching process in §4.3.2.
Supporting shared libraries. Calls to a shared library are
treated the same as internal function calls to preserve MARDU’s
code pointer hiding property; that is, MARDU refers to the
call trampoline for the shared library function via the proce-
dure linkage table (PLT) or global offset table (GOT) whose
address is resolved by the dynamic linker as usual. While
MARDU does not specifically protect GOT, we assume that
GOT is already protected using MPK [16, 32].
4.3 MARDU Kernel
MARDU kernel is responsible for maintaining a secure and
efficient runtime. This is done by: creating a MARDU XoM
enabled virtual code region, initializing a shadow stack for
each task1, randomizing/patching code, and reclaiming stale
randomized code. These actions are described in detail next.

1 A task denotes both process and thread as the convention in Linux kernel.

Mardu
Userspace
Process

In-Kernel
Randomized
Code Cache

Mardu-
Compiled
Binary

TrampolineCode
rand:
read:
write:

read:
write:
rand:

TrampolineCode
open:
read:
write:

read:
write:
open:

Random
offset

Code
rand:
read:
write:

Code
read:
write:
open:

Trampoline
read:
write:
rand:

Trampoline
read:
write:
open:

Fixups libc.so

      Randomized 
libc.so

      libc.so mapped to 
user virtual address spaceExecutable: websrv Executable: dbsrv

1

2

3

0x7fa67841a000 0x7f2bedffc000

0xffffffff811f7000

Figure 2: Memory layout of two MARDU processes: websrv
(top left) and dbsrv (top right). The randomized code in ker-
nel (0xffffffff811f7000) is shared by multiple processes, which
is mapped to its own virtual base address (0x7fa67841a000 for
websrv and 0x7f2bedffc000 for dbsrv).

4.3.1 Process Memory Layout Figure 2 illustrates the mem-
ory layout of two MARDU processes. MARDU compiler gen-
erates a PC-relative binary with trampoline code and fixup
metadata 1 . When a binary is loaded, MARDU kernel first ex-
tracts all MARDU metadata in the binary and associates it on
a per-file basis. This metadata gives MARDU the information
needed to perform (re-)randomization 2 .
Allocating a virtual code region. For each randomized bi-
nary, MARDU kernel allocates a 2 GB virtual address region2

2 , which will be mapped to userspace3 with coarse-grained
ASLR 3 . MARDU kernel positions the trampoline code at
the end of the virtual address region and that the trampo-
line address will remain static throughout program execution
even after re-randomization. Note that MARDU kernel maps
already-randomized code, if it exists, to the address space of
a newly fork-ed process for even more efficiency.

Whenever a new task is created (clone), MARDU kernel
allocates a new shadow stack and copies parent’s shadow
stack to its child; it is placed in the virtual code region cre-
ated by MARDU kernel. The base address of the MARDU
shadow stack is randomized by ASLR and is hidden in seg-
ment register %gs. Any crash, such as brute-force guessing of
base addresses, will trigger re-randomization, which invali-
dates all prior information gained. To maximize performance,
MARDU implements a compact shadow stack [9]. In addition,
we reserve one register, %rbp, to use exclusively as a stack top
index of the shadow stack to avoid costly memory access.

2We choose 2 GB because in x86-64 architecture PC-relative addressing can
refer to a maximum of ±2 GB range from %rip.
3 We note that, for the unused region, we map all those virtual addresses to
a single abort page that generate a crash when accessed to not waste real
physical memory and also detect potential attack attempts.

53



SYSTOR ’20, June 2–4, 2020, Haifa, Israel C. Jelesnianski et al.

4.3.2 Fine-Grain Code Randomization

Randomizing the code within the virtual region. Load-
time randomization and run-time re-randomization follow the
exact same procedure. To achieve a high entropy, MARDU
kernel uses fine-grained randomization within the allocated
virtual address region. After the trampoline is placed, MARDU
kernel randomly places the code region within the virtual ad-
dress region; MARDU decides a random offset between the
code and trampoline regions. Once the code region is de-
cided, MARDU permutes the function order within to further
increase entropy. As a result, trampoline addresses do not leak
information on non-trampoline code and an adversary cannot
infer any actual codes’ location from the system information
(e.g., /proc/<pid>/maps) as they will get the same mapping
information for the entire 2 GB region.
Patching the randomized code. After permuting functions,
MARDU kernel patches PC-relative instructions accessing
code or data according to the randomization pattern. This
patching process is trivial at runtime; MARDU compiler gener-
ates fixup location information and MARDU kernel re-calculates
and patches PC-relative offsets of instructions according to
the randomized function location. With the randomized code
semantically correct, it can be cached and mapped to multiple
applications, Figure 2 3 . Note that patching includes control
flow transfer between trampoline and code regions, global
data access, and function calls to other shared libraries.
4.3.3 Randomized Code Cache MARDU kernel manages
a cache of randomized code. When a userspace process tries
to map a file with executable permissions, MARDU kernel
first looks up if there already exists a randomized code of the
file. If cache hits, MARDU kernel maps the randomized code
region to the virtual address of the requested process. Upon
cache miss, it performs load-time randomization as described
earlier. MARDU kernel tracks how many times the random-
ized code region is mapped to userspace. If the reference
counter is zero or system memory pressure is high, MARDU
kernel evicts the randomized code. Thus, in normal cases
without re-randomization, MARDU randomizes a binary file
only once. In MARDU, the randomized code cache is asso-
ciated with the inode cache. Consequently, when the inode
is evicted from the cache under severe memory pressure, its
associated randomized code is also evicted.
4.3.4 Execute-Only Memory (XoM) We designed XoM
based on Intel MPK [24]4. With MPK, each page is assigned
to one of 16 domains under a protection key, which is encoded

4As of this writing, Intel Xeon Scalable Processors [25] and Amazon EC2
C5 instance [3] support MPK. Other than x86, ARM AArch64 architecture
also supports execute-only memory [5].

in a page table entry. Read and write permissions of each do-
main can be independently controlled through an MPK regis-
ter. When randomized code is mapped to userspace, MARDU
kernel configures the XoM domain to be non-accessible (i.e.,
neither readable nor writable in userspace), and assigns code
memory pages to the created XoM domain, enforcing execute-
only permissions. If an adversary tries to read XoM-protected
code memory, re-randomization is triggered via the raised
XoM violation. Unlike EPT-based XoM designs [12, 38], our
MPK-based design does not impose runtime overhead.
4.3.5 On-Demand Re-randomization
Triggering re-randomization. When a process crashes,

MARDU triggers re-randomization of all binaries mapped to
the crashing process. Since MARDU re-randomization thwarts
attacker’s knowledge (i.e., each attempt is an independent
trial), an adversary must succeed in her first try without crash-
ing, which is practically infeasible.
Re-randomizing code. Upon re-randomization, MARDU
kernel populates another copy of the code (e.g., libc.so)
in the code cache and randomizes it (Figure 3 1 ). MARDU
leaves trampoline code at the same location to avoid mutating
code pointers but it does randomly place non-trampoline code
(via new random offset) such that the new version does not
overlap with the old one. Then, it permutes functions in the
code. Thus, re-randomized code is completely different from
the previous one without changing trampoline addresses.
Live thread migration without stopping the world. Re-
randomized code prepared in the previous step is not visible to
userspace processes because it is not yet mapped to userspace.
To make it visible, MARDU first maps the new non-trampoline
code to the application’s virtual address space, Figure 3 2 .
The old trampolines are left mapped, making new code not
reachable. Once MARDU remaps the virtual address range
of the trampolines to the new trampoline code by updating
corresponding page table entries 3 , the new trampoline code
will transfer control flow to the new non-trampoline code.
Hereafter any thread crossing the trampoline migrates to the
new non-trampoline code without stopping the world.
Safely reclaiming the old code. MARDU can safely reclaim
the code only after all threads migrate to the new code 4 .
MARDU uses reference counting for each randomized code
to check if there is a thread accessing the old code. After the
new trampoline code is mapped 3 , MARDU sets a reference
counter of the old code to the number of all runnable tasks 5

that map the old code. It is not necessary to wait for migra-
tion of non-runnable, sleeping task because it will correctly
migrate to the newest randomized code region when it passes
through the (virtually) static return trampoline, which refers
to the new layout when it wakes up. The reference counter is

5A task in a TASK_RUNNING status in Linux kernel.

54



MARDU: Efficient and Scalable Code Re-randomization SYSTOR ’20, June 2–4, 2020, Haifa, Israel

Userspace
Virtual
Address Space

In-Kernel
Randomized
Code Cache

1 2 3 4     Populate the re-randomized 
libc.so in kernel code cache.

     Map the re-randomized code
to userspace virtual address.

     Map the re-randomized
trampoline to the userspace.

     When there is no task accessing the
old code, unmap the old code/trampoline.

Re-randomized 
libc.so

Current 
libc.so

Old trampoline

Old code

New trampoline

New code

Control
transfer

Figure 3: Re-randomization procedure in MARDU. Once a new re-randomized code is populated 1 , MARDU kernel maps new code
and trampoline in order 2 , 3 . This makes threads crossing the new trampoline migrate to the newly re-randomized code. After it is
guaranteed that all threads are migrated to the new code, MARDU reclaims the old code 4 . Unlike previous continuous per-process
re-randomization approaches, our re-randomization is time-bound, almost zero overhead, and system-wide.
decremented when a runnable task enters into MARDU ker-
nel due to system call or preemption. When calling a system
call, MARDU kernel will decrement reference counters of
all code that needs to be reclaimed. When the task returns
to userspace, it will return to the return trampoline and the
return trampoline will transfer to the new code. When a task
is preempted out, it may be in the middle of executing the old
non-trampoline code. Thus, MARDU kernel not only decre-
ments reference counters but also translates %rip of the task
to the corresponding address in the new code. Since MARDU
permutes at function granularity, %rip translation is merely
adding an offset between the old and new function locations.
Summary. Our re-randomization scheme has three nice prop-
erties: time boundness of re-randomization, almost zero over-
head of running process, and system-wide re-randomization.
The re-randomization is guaranteed to finish at most within
one scheduling quantum (e.g., 1 msec) once the newly ran-
domized code is exposed 3 . That is because MARDU mi-
grates runnable tasks at system call and scheduling boundary.
If another process crashes in the middle of re-randomization,
MARDU will not trigger another re-randomization until the
current randomization finishes. However, as soon as the new
randomized code is populated 1 , a new process will map
the new code immediately. Therefore, the old code cannot
be observed more than once. MARDU kernel populates a
new randomized code in the context of a crashing process.
All other runnable tasks only additionally perform reference
counting or translation of %rip to the new code. Thus, its run-
time overhead for runnable tasks is negligible. To the best of
our knowledge, MARDU is the first system to perform system-
wide runtime re-randomization while allowing code sharing.
5 Implementation
We implemented MARDU on the Linux x86-64 platform.
MARDU compiler is implemented using LLVM 6.0.0 and
MARDU kernel is implemented based on Linux kernel 4.17.0
modifying 3549 and 4009 lines of code (LOC), respectively.
We used musl libc 1.1.20 [1], a fast, lightweight C standard

library for Linux. We manually wrapped all inline assem-
bly functions present in musl to allow them to be properly
identified and instrumented by MARDU compiler.
5.1 MARDU Compiler
Trampoline. MARDU compiler is implemented as backend
target-ISA (x86) specific MachineFunctionPass. This pass
instruments each function body as described in §4.2.
Re-randomizable code. The following compiler flags are
used by MARDU compiler: -fPIC enables instructions to
use PC-relative addressing; -fomit-frame-pointer forces
the compiler to relinquish use of register %rbp, as register
%rbp is repurposed as the stack top index of a shadow stack in
MARDU; -mrelax-all forces the compiler to always emit full
4-byte displacement in the executable, such that MARDU ker-
nel can use the full span of memory within our declared 2GB
virtual address region and maximize entropy when perform-
ing patching; lastly, MARDU compiler ensures code and data
are segregated in different pages via using -fno-jump-tables
to prevent false positive XoM violations.
5.2 MARDU Kernel
Random number generation. MARDU uses a cryptograph-
ically secure random number generator in Linux based on
hardware instructions (i.e., rdrand) in Intel architectures.
5.3 Limitation of Our Prototype Implementation
Assembly Code. MARDU does not support inline assem-
bly as in musl; however, this could be resolved with further
engineering. Our prototype uses wrapper functions to make
assembly comply with MARDU calling convention.
Setjmp and exception handling. MARDU uses a shadow
stack to store return addresses. Thus, functions such as setjmp,
longjmp, and libunwind that directly manipulate return ad-
dresses on stack are not supported by our prototype. Modify-
ing these functions is straightforward though as our shadow
stack is a variant of compact, register-based shadow stack [9].
C++ support. Our prototype does not support C++ applica-
tions since we do not have a stable standard C++ library that

55



SYSTOR ’20, June 2–4, 2020, Haifa, Israel C. Jelesnianski et al.

is musl-compatible. Therefore handling C++ exceptions and
protecting vtables is out of scope.
6 Evaluation
We evaluate MARDU by answering these questions:
• How secure is MARDU, when presented against current

known attacks on randomization? (§6.1)
• How much performance overhead does MARDU impose,

particularly for compute-intensive benchmarks? (§6.2)
• How scalable is MARDU in terms of load time, re-randomization

time, and memory savings, paricularly for concurrent pro-
cesses such as in a real-world network facing server? (§6.3)

Applications. We evaluate the performance overhead of
MARDU using SPEC CPU2006. This benchmark suite has
realistic compute-intensive applications, ideal to see worst-
case performance overhead of MARDU. We tested all 12 C
language benchmarks using input size ref ; we excluded C++
benchmarks as our current prototype does not support C++.
We choose SPEC CPU2006 over SPEC CPU2017 to easily
compare MARDU to prior relevant re-randomization tech-
niques. We test performance and scalability of MARDU on a
complex, real-world multi-process web server with NGINX.
Experimental setup. All programs are compiled with op-
timization -O2 and run on a 24-core (48-hardware threads)
machine equipped with two Intel Xeon Silver 4116 CPUs
(2.10 GHz) and 128 GB DRAM.
6.1 Security Evaluation
We analyze the resiliency of MARDU against existing attacker
models pertinent to current re-randomization defenses.

MARDU Security Summary:
• vs.JIT-ROP: Execute-only memory blocks the attack.
• vs.BROP/Code Inference: Re-randomization blocks any code

inference via crash.
• vs.Low-profile JIT-ROP: Execute-only memory and a large

search space (2 GB dummy mappings) block JIT-ROP and
crash-resistant probing.

• vs.Code Pointer Offsetting: Trampolines decouple function
entry from function bodies blocking any type of code pointer
offsetting; full function code reuse of exported functions re-
mains possible.

6.1.1 Attacks against Load-Time Randomization
Against JIT-ROP attacks. MARDU asserts permissions for
all code areas and trampoline regions as execute-only (via
XoM); thereby, JIT-ROP cannot read code contents directly.
Against code inference attacks. MARDU blocks code infer-
ence attacks, including BROP [8], clone-probing [31], and
destructive code read attacks [35, 37] via layout re-rand-
omization triggered by an application crash or XoM violation.
Every re-randomization renders all previously gathered (if
any) information regarding code layout invalid and therefore
prevents attackers from accumulating indirect information.

Hiding shadow stack. Attackers with arbitrary read/write
capability may attempt to leak/alter shadow stack contents
if its address is known. Although the location of the shadow
stack is hidden behind the %gs register, attackers may employ
attacks that undermine this sparse-memory based information
hiding [15, 21, 34]. To prevent such attacks, MARDU reserves
a 2 GB virtual memory space for the shadow stack (the same
way MARDU allocates code/library space) and chooses a
random offset to map the shadow stack; all other pages in the
2 GB space are mapped as an abort page. Even assuming if
attackers are able to identify the 2 GB region for the shadow
stack, they must also overcome the randomization entropy of
the offset to get a valid address within this region (winning
chance: roughly one in 231); any incorrect probe will generate
a crash, trigger re-randomization, thwarting the attack.
Entropy. MARDU permutes all functions in each executable
and applies a random start offset to the code area in 2 GB
space for each randomization providing high entropy to each
new code layout. Thus, randomization entropy depends on
the number of functions in the executable and the size of
a code region (i.e., loд2(n! · 231) where n is the number of
functions). To illustrate, 470.lbm in SPEC provides the mini-
mum entropy in our evaluation; it contains 26 functions and
is less than 64 KB in size, but has 119.38 bits entropy us-
ing MARDU. Therefore, even for small programs, MARDU
randomizes code with significantly high entropy to render
attacker’s success rate for guessing the layout negligible.
6.1.2 Attacks against Continuous Re-randomization
Against low-profile attacks. MARDU does not rely on tim-
ing nor system call history for triggering re-randomization.
As a result, neither low-latency attacks nor attacks without
involving system calls are effective against MARDU. Instead,
re-randomization is triggered and performed by any MARDU
instrumented application process that encounters a crash (e.g.,
XoM violation). Nonetheless, a potential vector could be one
that does not cause any crash during exploitation (e.g., attack-
ers may employ crash-resistant probing [15, 18, 21, 29, 34]).
In this regard, MARDU places all code in execute-only mem-
ory within 2 GB mapped region. Such a stealth attack could
only identify multiples of 2 GB code regions and will fail to
leak any layout information.
Against code pointer offsetting attacks. Attackers may at-
tempt to launch this attack by adding/subtracting offsets to a
pointer. To defend against this, MARDU decouples any corre-
lation between trampoline function entry addresses and func-
tion body addresses (i.e., no fixed offset), so attackers cannot
refer to the middle of a function for a ROP gadget without
actually obtaining a valid function body address. Additionally,
the trampoline region is also protected with XoM, thus attack-
ers cannot probe it to obtain function body addresses to launch

56



MARDU: Efficient and Scalable Code Re-randomization SYSTOR ’20, June 2–4, 2020, Haifa, Israel

 0

 5

 10

 15

 20

 25

 30

perlbench

bzip2

gcc
m

cf
m

ilc
gobm

k

hm
m

er

sjeng

libquantum

h264ref

lbm
sphinx3

geom
ean

P
e
rf

o
rm

a
n
c
e
 o

v
e
rh

e
a
d
 (

%
)

Trampoline only (no shadow stack)
Full Mardu (trampoline + shadow stack)

Figure 4: MARDU performance overhead breakdown for SPEC

code pointer offsetting. MARDU limits available code-reuse
targets to only exported functions in the trampoline.
6.2 Performance Evaluation
Runtime performance overhead with SPEC CPU2006. Fig-
ure 4 shows the performance overhead of SPEC with MARDU
trampoline only instrumentation (which does not use a shadow
stack) as well as with full MARDU implementation. Both of
these numbers are normalized to the unprotected baseline,
compiled with vanilla Clang. Figure 4 does not include a
direct performance comparison to other randomization tech-
niques as MARDU is substantially different in how it imple-
ments re-randomization. It is not based on timing nor system
call history compared to previous works. This peculiar ap-
proach allows MARDU’s average overhead to be comparable
to the fastest re-randomization systems and its worst-case
overhead significantly better than similar systems. The aver-
age overhead of MARDU is 5.5%, and the worst-case over-
head is 18.3% (perlbench); in comparison to Shuffler [41]
and CodeArmor [10], whose reported average overheads are
14.9% and 3.2%, and their worst-case overhead are 45% and
55%, respectively. TASR [7] shows a very practical average
overhead of 2.1%; however, it has been reported by Shuf-
fler [41] and ReRanz [39] that TASR’s overhead against a
more realistic baseline (not using compiler flag -Og) is closer
to 30-50% overhead. This confirms MARDU is capable of
matching if not slightly improving the performance (espe-
cially worst-case) overhead, while casting a wider net in terms
of known attack coverage.

MARDU’s two sources of runtime overhead are trampolines
and shadow stack. MARDU uses a compact shadow stack with-
out a comparison epilogue whose sole purpose is to secure
return addresses. Specifically, only 4 additional assembly in-
structions are needed to support our shadow stack. Therefore
we show the trampoline only configuration to clearly differen-
tiate the overhead contribution of each component. Figure 4
shows MARDU’s shadow stack overhead is negligible with an
average of less than 0.3%, and in the noticeable gaps, adding
less than 2% in perlbench, gobmk, and sjeng. The overhead
in these three benchmarks comes from the higher frequency
of short function calls, making shadow stack updates not
amortize as well as in other benchmarks.

0

500

1000

1500

2000

2500

4 8 12 16 20 24

B
an

dw
id

th
(M

B
/s

ec
)

# of worker processes

MARDU
Vanilla

Figure 5: Performance comparison of NGINX web server

6.3 Scalability Evaluation
Runtime performance overhead with NGINX. NGINX is
configured to handle a max of 1024 connections per processor,
and its performance is observed according to the number of
worker processes. wrk [20] is used to generate HTTP requests
for benchmarking. wrk spawns the same number of threads
as NGINX workers and each wrk thread sends a request for
a 6745-byte static html. To see worst-case performance, wrk
is run on the same machine as NGINX to factor out network
latency unlike Shuffler. Figure 5 presents the performance
of NGINX with and without MARDU for a varying number
of worker processes. The performance observed shows that
MARDU exhibits very similar throughput to vanilla. MARDU
incurs 4.4%, 4.8%, and 1.2% throughput degradation on av-
erage, at peak (12 threads), and at saturation (24 threads), re-
spectively. Note that Shuffler [41] suffers from overhead from
per-process shuffling thread; just enabling Shuffler essentially
doubles CPU usage. Even in their NGINX experiments with
network latency (i.e., running a benchmarking client on a
different machine), Shuffler shows 15-55% slowdown. This
verifies MARDU’s design that having a crashing process per-
form system-wide re-randomization, rather than a per-process
background thread as in Shuffler, scales better.
Runtime memory savings. While there is an upfront one-
time cost for instrumenting with MARDU, the savings greatly
outweigh this. To illustrate, we show a typical use case of
MARDU in regards to shared code. musl is ≈800 KB in size,
instrumented is 2 MB. Specifically, musl has 14K trampolines
and 7.6K fixups for PC-relative addressing, the total tram-
poline size is 190 KB and the amount of loaded metadata is
1.2 MB. Since MARDU supports code sharing, only one copy
of libc is needed for the entire system. Backes et al. [6] and
Ward et al. [40] also highlighted the code sharing problem in
randomization techniques and reported a similar amount of
memory savings by sharing randomized code. Finally, note
that the use of shadow stack does not increase runtime mem-
ory footprint because MARDU solely relocates return address
from the normal stack to the shadow stack.
Load-time randomization overhead. We categorize load-
time to cold or warm load-time whether the in-kernel code
cache ( 2 in Figure 2) hits or not. Upon a code cache miss (i.e.,
the executable is first loaded in a system), MARDU performs
initial randomization including function-level permutation,

57



SYSTOR ’20, June 2–4, 2020, Haifa, Israel C. Jelesnianski et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

perlbench

bzip2

gcc
m

cf
m

ilc
gobm

k

hm
m

er

sjeng

libquantum

h264ref

lbm
sphinx3

nginx

L
o
a
d
-t

im
e
 r

a
n
d
 (

m
s
e
c
)

average

Figure 6: Cold load-time randomization overhead

 0

 5

 10

 15

 20

perlbench

bzip2

gcc
m

cf
m

ilc
gobm

k

hm
m

er

sjeng

libquantum

h264ref

lbm
sphinx3

nginx

R
e
-r

a
n
d
 l
a
te

n
c
y
 (

m
s
e
c
)

average

Figure 7: Re-randomization latency

start offset randomization of the code layout, and loading &
patching of fixup metadata. As Figure 6 shows, all C SPEC
benchmarks showed negligible overhead averaging 95.9 msec.
gcc, being the worst-case, takes 771 msec; it requires the
most (291,699 total) fixups relative to other SPEC bench-
marks, with ≈9,372 fixups on average. perlbench and gobmk
are the only other outliers, having 103,200 and 66,900 fix-
ups, respectively; all other programs have <<35K fixups. For
NGINX, we observe that load time is constant (61 msec) for
any number of specified worker processes. Cold load-time
is roughly linear to the number of trampolines. Upon a code
cache hit, MARDU simply maps the already-randomized code
to a user-process’s virtual address space. Therefore we found
that warm load-time is negligible. Note that, for a cold load-
time of musl takes about 52 msec on average. Even so, this is
a one time cost; all subsequent warm load-time accesses of
fetching musl takes below 1µsec, for any program needing it.
Thus, load time can be largely ignored.
Re-randomization latency. Figure 7 presents time to re-
randomize all associated binaries of a crashing process. The
time includes creating & re-randomizing a new code layout,
and reclaiming old code ( 1 - 4 in Figure 3). We emulate
an XoM violation by killing the process via a SIGBUS sig-
nal and measured re-randomization time inside the kernel.
The average latency of SPEC is 6.2 msec. The performance
gained between load-time and re-randomization latency is
from MARDU taking advantage of metadata being cached
from load-time, meaning no redundant file I/O penalty is
incurred. To evaluate the efficiency of re-randomization on
multi-process applications, we measured the re-randomization
latency with varying number of NGINX worker processes up
to 24. We confirm latency is consistent regardless of number
of workers (5.8 msec on average, 0.5 msec std. deviation).

0
2
4
6
8

10
12
14
16
18

10
00

ms

10
0m

s
50

ms
10

ms
1m

s
0
2
4
6
8

10
12
14
16
18

10
00

ms

10
0m

s
50

ms
10

ms
1m

s
0
2
4
6
8

10
12
14
16
18

10
00

ms

10
0m

s
50

ms
10

ms
1m

sPe
rf

or
m

an
ce

ov
er

he
ad

(%
) milc sjeng gobmk

Figure 8: Overhead varying re-randomization frequency

Re-randomization overhead under active attacks. A good
re-randomization system should exhibit good performance
not only in its idle state but also under stress from active at-
tacks. To evaluate this, we stress test MARDU under frequent
re-randomization to see how well it can perform, assuming a
scenario that MARDU is under attack. In particular, we mea-
sure the performance of SPEC benchmarks while triggering
frequent re-randomization. We emulate the attack by run-
ning a background application, which continuously crashes
at the given periods: 1 sec, 100 msec, 50 msec, 10 msec, and
1 msec. SPEC benchmarks and the crashing application are
linked with the MARDU version of musl, forcing MARDU to
constantly re-randomize musl and potentially incur perfor-
mance degradation on other processes using the same shared
library. In this experiment, we choose three representative
benchmarks, milc, sjeng, and gobmk, that MARDU exhibits
a small, medium, and large overhead in an idle state, respec-
tively. Figure 8 shows that the overhead is consistent, and in
fact, is very close to the performance overhead in the idle state
observed in Figure 4. More specifically, all three benchmarks
differ by less than 0.4% at a 1 sec re-randomization interval.
When we decrease the re-randomization period to 10 msec
and 1 msec, the overhead is quickly saturated. Even at 1 msec
re-randomization frequency, the additional overhead is under
6 %. These results confirm that MARDU provides performant
system-wide re-randomization even under active attack.
7 Discussion and Limitations
Residual attack surface. In terms of code-reuse attack sur-
face, the following are traditional resources compromised and
leveraged: 1) return addresses via direct and indirect func-
tion calls, 2) ROP gadgets within the code region, and 3)
function entries for full function reuse. MARDU completely
protects 1) and 2), using shadow stack and XoM, respectively,
leaving only function entry 3). Evaluating SPEC, musl, and
NGINX, shows the percentage of secured sensitive fragments
is 95.6% on average. This means function entries via MARDU
trampolines make up less than 4.4% of total leverage-able
sensitive fragments. Applying orthogonal solutions such as
CFI can complement MARDU to fill this gap as applying both
techniques will make full function reuse more difficult.
Applying MARDU to binary programs. Although this pro-
totype requires access to source code, applying MARDU di-
rectly to binary programs is possible. If one can precisely

58



MARDU: Efficient and Scalable Code Re-randomization SYSTOR ’20, June 2–4, 2020, Haifa, Israel

detect all indirect control transfers (call/ret), then the binary
code can be directly instrumented such that transfers utilize
trampolines instead. Therefore, MARDU should be practical
enough to adopt with little additional engineering effort.
8 Conclusion
While current defense techniques are capable of defending
against current ROP attacks, most designs inherently tradeoff
well-rounded performance and scalability for their security
guarantees. Hence, we introduce MARDU, a novel on-demand
system-wide re-randomization technique to combat code-
reuse attacks. MARDU is the first code-reuse defense capable
of code-sharing with re-randomization to enable practical se-
curity that scales system-wide. By being able to re-randomize
on-demand, MARDU eliminates both costly runtime overhead
and integral threshold components associated with current
continuous re-randomization techniques. Our evaluation ver-
ifies MARDU’s security guarantees against known ROP at-
tacks and adequately quantifies its high entropy. Furthermore,
MARDU’s performance overhead on SPEC CPU2006 and
multi-process NGINX averages 5.5% and 4.4%, respectively,
confirming practicality and scalability.
9 Acknowledgment
We would like to thank the anonymous reviewers for their
insightful comments. This work is supported in part by US
Office of Naval Research under grants N00014-18-1-2022.
References

[1] 2019. musl libc. https://wiki.musl-libc.org/.
[2] One Aleph. 1996. Smashing the stack for fun and profit. http://www.

shmoo. com/phrack/Phrack49/p49-14 (1996).
[3] Amazon. 2019. Amazon EC2 C5 Instances. https://aws.amazon.com/

ec2/instance-types/c5/.
[4] Autore Anonimo. 2001. Once upon a free ().. Phrack Magazine 11, 57

(2001).
[5] ARM. 2019. ARM Compiler Software Development Guide: 2.21

Execute-only memory. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.dui0471j/chr1368698326509.html.

[6] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-
Grained Memory Randomization Practical by Allowing Code Sharing.
In Proceedings of the 23rd USENIX Security Symposium (Security).
San Diego, CA.

[7] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and
Hamed Okhravi. 2015. Timely Rerandomization for Mitigating Mem-
ory Disclosures. In Proceedings of the 22nd ACM Conference on Com-
puter and Communications Security (CCS). Denver, Colorado.

[8] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and
Dan Boneh. 2014. Hacking blind. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (Oakland). San Jose, CA.

[9] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining
Light on Shadow Stacks. In Proceedings of the 40th IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA.

[10] Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor:
Virtualizing The Code Space to Counter Disclosure Attacks. In Pro-
ceedings of the 2nd IEEE European Symposium on Security and Privacy
(Euro S&P). Paris, France.

[11] Stephen Crane, Andrei Homescu, and Per Larsen. 2016. Code Ran-
domization: Haven’t We Solved This Problem Yet?. In Cybersecurity
Development (SecDev), IEEE. IEEE, 124–129.

[12] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi,
Per Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael
Franz. 2015. Readactor: Practical Code Randomization Resilient to
Memory Disclosure. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (Oakland). San Jose, CA.

[13] Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen,
Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn
De Sutter, and Michael Franz. 2015. It’s a TRaP: Table Randomization
and Protection Against Function-reuse Attacks. In Proceedings of the
36th IEEE Symposium on Security and Privacy (Oakland). San Jose,
CA.

[14] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim,
and Wenke Lee. 2017. Efficient protection of path-sensitive control
security. In Proceedings of the 26th USENIX Security Symposium (Se-
curity). Vancouver, BC, Canada.

[15] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar,
Tiffany Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin
Rinard, and Hamed Okhravi. 2015. Missing the point (er): On the
effectiveness of code pointer integrity. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland). San Jose, CA.

[16] Fedora. 2018. Hardening Flags Updates for Fedora 28. https://
fedoraproject.org/wiki/Changes/HardeningFlags28.

[17] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu
Aweke, Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Har-
ris, Zhixing Xu, Baris Kasikci, Valeria Bertacco, Sharad Malik, Mohit
Tiwari, and Todd Austin. 2019. Morpheus: A Vulnerability-Tolerant
Secure Architecture Based on Ensembles of Moving Target Defenses
with Churn. In Proceedings of the 24th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Providence, RI, USA, 469–484.

[18] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany,
and Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to
Overcome Diversification and Information Hiding. In Proceedings of
the 2016 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA.

[19] Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. 2012.
Enhanced Operating System Security Through Efficient and Fine-
grained Address Space Randomization. In Proceedings of the 21st
USENIX Security Symposium (Security). Bellevue, WA.

[20] Will Glozer. 2019. a HTTP benchmarking tool. https://github.com/wg/
wrk.

[21] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopou-
los, Georgios Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016.
Undermining Information Hiding (and What to Do about It). In Pro-
ceedings of the 25th USENIX Security Symposium (Security). Austin,
TX.

[22] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing
Unique Code Target Property for Control-Flow Integrity. In Proceed-
ings of the 25th ACM Conference on Computer and Communications
Security (CCS). Toronto, ON, Canada.

[23] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. 2016. Data-oriented programming: On
the expressiveness of non-control data attacks. In Security and Privacy
(SP), 2016 IEEE Symposium on. IEEE, 969–986.

[24] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Software
Developer’s Manual. https://software.intel.com/en-us/articles/intel-
sdm.

59

https://wiki.musl-libc.org/
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/c5/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471j/chr1368698326509.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471j/chr1368698326509.html
https://fedoraproject.org/wiki/Changes/HardeningFlags28
https://fedoraproject.org/wiki/Changes/HardeningFlags28
https://github.com/wg/wrk
https://github.com/wg/wrk
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm


SYSTOR ’20, June 2–4, 2020, Haifa, Israel C. Jelesnianski et al.

[25] Intel Corporation. 2019. INTEL ® XEON ® SCALABLE PROCES-
SORS. https://www.intel.com/content/www/us/en/products/processors/
xeon/scalable.html.

[26] Jonathan Corbet. 2004. x86 NX support. https://lwn.net/Articles/
87814/.

[27] Michel Kaempf. [n. d.]. Vudo malloc tricks. Phrack Magazine, 57 (8),
August 2001.

[28] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA.

[29] Benjamin Kollenda, Enes Göktaş, Tim Blazytko, Philipp Koppe, Robert
Gawlik, Radhesh Krishnan Konoth, Cristiano Giuffrida, Herbert Bos,
and Thorsten Holz. 2017. Towards Automated Discovery of Crash-
resistant Primitives in Binary Executables. In Proceedings of the 47th
International Conference on Dependable Systems and Networks (DSN).
Denver, CO.

[30] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In Proceedings of the 27th USENIX
Security Symposium (Security). Baltimore, MD.

[31] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016.
How to Make ASLR Win the Clone Wars: Runtime Re-Randomization.
In Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS). San Diego, CA.

[32] Michael Larabel. 2017. Glibc Rolls Out Support For Memory Protection
Keys. https://www.phoronix.com/scan.php?page=news_item&px=
Glibc-Memory-Protection-Keys.

[33] Microsoft Support. 2017. A detailed description of the Data Ex-
ecution Prevention (DEP) feature in Windows XP Service Pack
2, Windows XP Tablet PC Edition 2005, and Windows Server
2003. https://support.microsoft.com/en-us/help/875352/a-detailed-
description-of-the-data-execution-prevention-dep-feature-in.

[34] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and
Cristiano Giuffrida. 2016. Poking Holes in Information Hiding.. In
Proceedings of the 25th USENIX Security Symposium (Security). Austin,
TX.

[35] Jannik Pewny, Philipp Koppe, Lucas Davi, and Thorsten Holz. 2017.
Breaking and Fixing Destructive Code Read Defenses. In Proceedings
of the 12th ACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS). Abu Dhabi, UAE, 55–67.

[36] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In Proceedings of
the 14th ACM Conference on Computer and Communications Security.
Alexandria, VA.

[37] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M.
Polychronakis. 2016. Return to the Zombie Gadgets: Undermining
Destructive Code Reads via Code Inference Attacks. In Proceedings
of the 37th IEEE Symposium on Security and Privacy (Oakland). San
Jose, CA.

[38] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015.
Heisenbyte: Thwarting memory disclosure attacks using destructive
code reads. In Proceedings of the 22nd ACM Conference on Computer
and Communications Security (CCS). Denver, Colorado.

[39] Zhe Wang, Chenggang Wu, Jianjun Li, Yuanming Lai, Xiangyu Zhang,
Wei-Chung Hsu, and Yueqiang Cheng. 2017. Reranz: A Light-weight
Virtual Machine to Mitigate Memory Disclosure Attacks. In Proceed-
ings of the 13th International Conference on Virtual Execution Envi-
ronments (VEE). Xi’an, China.

[40] Bryan C Ward, Richard Skowyra, Chad Spensky, Jason Martin, and
Hamed Okhravi. 2019. The Leakage-Resilience Dilemma. In Pro-
ceedings of the 24th European Symposium on Research in Computer
Security (ESORICS). Luxembourg.

[41] David Williams-King, Graham Gobieski, Kent Williams-King, James P
Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Ke-
merlis, Junfeng Yang, and William Aiello. 2016. Shuffler: Fast and
Deployable Continuous Code Re-Randomization. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). Savannah, GA.

60

https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://lwn.net/Articles/87814/
https://lwn.net/Articles/87814/
https://www.phoronix.com/scan.php?page=news_item&px=Glibc-Memory-Protection-Keys
https://www.phoronix.com/scan.php?page=news_item&px=Glibc-Memory-Protection-Keys
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in

	Abstract
	1 Introduction
	2 Code Layout (Re-)Randomization
	3 Threat Model and Assumptions
	4 Mardu Design
	4.1 Goals
	4.2 Mardu Compiler
	4.3 Mardu Kernel

	5 Implementation
	5.1 Mardu Compiler
	5.2 Mardu Kernel
	5.3 Limitation of Our Prototype Implementation

	6 Evaluation
	6.1 Security Evaluation
	6.2 Performance Evaluation
	6.3 Scalability Evaluation

	7 Discussion and Limitations
	8 Conclusion
	9 Acknowledgment
	References

