Securely Sharing Randomized Code that Flies

CHRISTOPHER JELESNIANSKI, Virginia Tech,
JINWOO YOM, Virginia Tech,
CHANGWOOW MIN, Virginia Tech,
YEONGJIN JANG, Oregon State University,

Address Space Layout Randomization (ASLR) was a great role model being a light-weight defense technique that could prevent early return-oriented programming (ROP) attacks. Simple yet effective, ASLR was quickly widely-adopted. Conversely, today only a trickle of defense techniques are being integrated or adopted mainstream. As code reuse attacks have evolved in complexity, defenses have strived to keep up. However, to do so, many have had to take unfavorable tradeoffs like using background threads or protecting only a subset of sensitive code. In reality, these tradeoffs were unavoidable steps necessary to improve the strength of the state-of-the-art. In this paper, we present Mardu, an on-demand system-wide runtime re-randomization technique capable of scalable protection of application as well as shared library code most defenses have forgone. We achieve code sharing with diversification by implementing reactive and scalable, rather than continuous or one-time diversification. Enabling code sharing further removes redundant computation like tracking, patching, along with memory overheads required by prior randomization techniques. In its baseline state, the code transformations needed for Mardu security hardening incur a reasonable performance overhead of 5.5% on SPEC and minimal degradation of 4.4% in NGINX, demonstrating its applicability to both compute-intensive and scalable real-world applications. Even when under attack, Mardu only adds from less than 1% up to 15% depending on application size and complexity.

CCS Concepts:
- Security and privacy → Software security engineering, Systems security;

Additional Key Words and Phrases: Code Randomization, Return-Oriented Programming, Code Reuse, Code Sharing

1 INTRODUCTION

Code reuse attacks have grown in depth and complexity to circumvent early defense techniques like Address Space Layout Randomization (ASLR) [63]. Examples like return-oriented programming (ROP) and ret-into-libc [58], utilize a victim’s code against itself. ROP leverages innocent code snippets, i.e., gadgets, to construct malicious payloads. Reaching this essential gadget commodity versus defending it from being exploited has made an arms race between attackers and defenders. Both coarse- and fine-grained ASLR, while light-weight, are vulnerable to attack. Whether an entire code region or basic block layout is randomized in memory, a single memory disclosure can result in exposing the entire code layout, regardless [59]. Execute-only memory (XoM) was introduced to prevent direct memory disclosures, by enabling memory regions to be marked with execute-only permissions [16, 18]. However, code inference attacks, a code reuse attack variant that works by indirectly observing and deducing information about the code layout circumvented these limitations [9]. Various attack angles have revealed that one-time randomization is simply not sufficient, and that stronger adversaries remain to be dealt with efficiently and securely [8, 47].

This fostered the next generation of defenses, such as Shuffler [74] and CodeArmor [12], which introduced continuous runtime re-randomization to strengthen security guarantees. However, these techniques are not
designed for a system’s scalability in mind. Despite being performant, non-intrusive, and easily deployable, they rely on background threads to run re-randomization or approximated use of timing thresholds to proactively secure vulnerable code. Specifically, these mechanisms consume valuable system resources even when not under attack (e.g., consuming CPU time per each threshold for re-randomization), leaving less compute power for the task at hand. Additionally, no continuous re-randomization techniques currently support code sharing, and thereby, use much more physical memory by countering the operating systems memory deduplication technique of using a page cache [6]. Under these defenses, the resource budget required for running an application is much higher than is traditionally expected, making active randomization techniques not scalable for general multi-programming computing.

Control Flow Integrity (CFI) is another protection technique that guards against an attacker attempting to subvert a program’s control flow. CFI in general is already widely deployed on Windows, Android [65], and iOS as well as having support in compilers like LLVM [62] and gcc [64]. CFI enforces the integrity of a program’s control flow based off a constructed control flow graph (CFG) as well as derived equivalence classes for each forward-edge. However, building a fully precise CFG for enforcing CFI is challenging and is still considered an open problem. Going in an orthogonal direction to CFI could avoid these inherent challenges.

In this paper, we introduce Mardu to refocus the defense technique design, showing that it is possible to embrace core fundamentals of both performance and scalability, while ensuring comprehensive security guarantees.

Mardu builds on the insight that thresholds, like time intervals [12, 74] or the amount of leaked data [70], are a security loophole and a performance shackle in re-randomization; Mardu does not rely on a threshold at all in its design. Instead Mardu only activates re-randomization when necessary. Mardu takes advantage of an event trigger design and acts on permissions violations of Intel Memory Protection Keys (MPK) [37]. Using Intel MPK, Mardu provides efficient XoM protection against both variations of remote and local JIT-ROP. With XoM in place, Mardu leverages Readactor’s [16, 17] immutable trampoline idea; such that, while trampolines are not re-randomized, they are protected from read access and effectively decouple function entry points from function bodies, making it impossible for an attacker to infer and obtain ROP gadgets.

It is crucial to note that few re-randomization techniques factor in the overall scalability of their approach. Support for code sharing is very challenging especially for randomization-based techniques. This is because applying re-randomization per process counters the principles of memory deduplication. Additionally, the prevalence of multi-core has excused the reliance on per-process background threads dedicated to performing compute-intensive re-randomization processes; even if recent defenses have gained some ground in the arms race, most still lack effective comprehensiveness in security for the system resource demands they require in return (both CPU and memory). Mardu balances performance and scalability by not requiring expensive code pointer tracking and patching. Furthermore, Mardu does not incur a significant overhead from continuous re-randomization triggered by conservative time intervals or benign I/O system calls as in Shuffer [74] and ReRanz [70], respectively. Finally, Mardu is designed to both support code sharing and not require the use of any additional system resources (e.g., background threads as used in numerous works [8, 12, 23, 70, 74]). To summarize, we make the following contributions:

- **ROP attack & defense analysis.** Our background in §2, describes four prevalent ROP attacks that challenge current works, including JIT-ROP, code-inference, low-profile, and code pointer offsetting attacks. With this, we classify and exhibit current state-of-the-art defenses standings on three fronts: security, performance, and scalability. Our findings show most defenses are not as secure or as practical as expected against current ROP attack variants.

- **Mardu defense framework.** We present the design of Mardu in §4, a comprehensive ROP defense technique capable of addressing most popular and known ROP attacks, excluding only full-function code reuse attacks.
Table 1. Classifications of ASLR-based code-reuse defenses. Gray highlighting emphasizes the attack (A1-A4) that largely invalidated each type of defense. • indicates the attack is blocked by the defense (attack-resistant). ✗ indicates the defense is vulnerable to that attack. ▲ indicates the attack is not blocked but is still mitigated by the defense (attack-resilient). ✓ indicates the defense meets performance/scalability requirements. ✗ indicates the defense is unable to meet performance/scalability requirements. N/A in column A3 indicates that the attack is not applicable to the defense due to lack of re-randomization; N/T in column Performance indicates that either SPEC CPU2006 or perlbench is not tested. Specifically in column A1, ▲ indicates that the defense cannot prevent the JIT-ROP attack within the application boundary that does not use system calls; in column A4, ✗ indicates that an attack may reuse both ROP gadgets and entire functions while ▲ indicates that an attack can only reuse entire functions. † Note that in TASR, the baseline is a binary compiled with -Og, necessary to correctly track code pointers. Previous work [70, 74] reported performance overhead of TASR using regular optimization (-O2) binary is ≈ 30-50%. Mardu provides strong security guarantees with competitive performance overhead and good system-wide scalability compared to existing re-randomization approaches.

<table>
<thead>
<tr>
<th>Types</th>
<th>Defenses</th>
<th>Security</th>
<th>Performance</th>
<th>Scalability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load-time ASLR</td>
<td>Fine-ASLR [14, 33, 34, 39, 43, 51, 72]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ 6.4% ✗</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>Oxyron [6]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ 2.7% ✗</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>Pagerando [19]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ 1.09% ✗</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>Isomeron [19]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ 19% ✗</td>
<td>✗ ✗</td>
</tr>
<tr>
<td>Load-time+XoM</td>
<td>Redactor/Readactor++ [16, 18]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ 4.3% ✗</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>LR 2 [10]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ 6.6% ✗</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>kR° X [54]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ 2.52% ✗</td>
<td>✗ ✗</td>
</tr>
<tr>
<td>Re-randomization</td>
<td>TASR [8]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ N/T N/T</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>ReRanz [70]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ N/T N/T</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>Shuffler [74]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ N/T N/T</td>
<td>✗ ✗</td>
</tr>
<tr>
<td></td>
<td>CodeArmor [12]</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ N/T N/T</td>
<td>✗ ✗</td>
</tr>
<tr>
<td>Our Approach</td>
<td>Mardu</td>
<td>✗ ✗ N/A ✗</td>
<td>✗ N/T N/T</td>
<td>✗ ✗</td>
</tr>
</tbody>
</table>

- **Scalability and shared code support.** To the best of our knowledge, Mardu is the first framework capable of re-randomizing shared code throughout runtime. Mardu creates its own calling convention to both leverage a shadow stack and minimize overhead of pointer tracking. This calling convention also enables shared code (e.g., libraries) to be re-randomized by any host process and maintain security integrity for the rest of the entire system.

- **Evaluation & prototype.** We have built a prototype of Mardu and evaluated it in §6 with both compute-intensive benchmarks and real-world applications.

2 CODE LAYOUT (RE-)RANDOMIZATION

In this section, we present a background on the code re-use attack and defense arms race. In summary, Table 1 illustrates the characteristics of each defense technique by their randomization category, attack resilience, and performance and scalability factors, and we describe these in detail in the following.

2.1 Attacks against Load-time Randomization

Load-time Randomization without XoM. Code layout randomization techniques such as coarse-grained ASLR [63] and fine-grained ASLR [6, 14, 19, 33, 34, 39, 43, 51, 72] which depend on the granularity of layout randomization, fall into this category of code layout randomization. These techniques randomize the code layout only once, usually when loaded into memory, and its layout never changes thereafter during the lifetime of the program.
A1: Just-in-time ROP (JIT-ROP). An attacker with an arbitrary memory read capability may launch JIT-ROP [59] by interactively performing memory reads to disclose one code pointer. This disclosure can be used to then leapfrog and further disclose other addresses to ultimately learn the entire code contents in memory. Any load-time code randomization technique that does not protect code from read access including fine-grained ASLR techniques is susceptible to this attack.

Load-time Randomization with XoM. In response to A1 (JIT-ROP), several works protect code from read access via destructive read memory [61, 73] or execute-only memory (XoM) [5, 10, 12, 16, 18, 26, 54, 61, 73]. By destroying, purposely corrupting code read by attackers, or fundamentally removing read permissions from the code area, respectively, these techniques prevent attackers from gaining knowledge about the code contents, nullifying A1.

A2: Blind ROP (BROP) and code inference attacks. Even with XoM, load-time randomizations still are susceptible to BROP [9] or other inference attacks [53, 60]. BROP infers code contents via observing differences in execution behaviors such as timing or program output while other attacks [53, 60] defeat destructive code read defenses [61, 73] by weaponizing code contents from only a small fraction of a code read. Therefore, maintaining a fixed layout over crash-probing or read access to code allows inferring code contents indirectly, letting attackers still learn the code layout.

2.2 Defeating A1/A2 via Continuous Re-randomization

Continuous re-randomization techniques [8, 12, 23, 27, 47, 70, 74] aim to defeat A1 and A2 by continuously shuffling code (and data) layouts at runtime to make information leaks or code probing done before shuffling useless. To illustrate the internals of re-randomization techniques, we describe the core design elements of re-randomization by categorizing them into two types: 1) **Re-randomization triggering condition** and 2) **Code pointer semantics**.

By re-randomization triggering condition:
- **Timing:** Techniques [12, 74] shuffle the layout periodically by setting a timing window. For example, Shuffler [74] triggers re-randomization every 50 msec (< network latency) to counter remote attackers, and CodeArmor [12] can set re-randomization period as low as 55 µsec.
- **System-call history:** Techniques [8, 47, 70] shuffle the layout based on the history of the program’s previous system call invocations, e.g., invoking fork() (vulnerable to BROP) [47] or when write() (leak) is followed by read() (exploit) [8, 70].

By code pointer semantics:
- **Code address as code pointer:** Techniques (ASR3 [27] and TASR [8]) use actual code address as code pointers. In this case, leaking a code pointer lets the attacker have knowledge about an actual code address. Therefore, this design requires tracking of all code pointers (or all pointers) at runtime, which is computationally expensive, to update values after randomizing the code layout.
- **Function trampoline address as code pointer:** These techniques store an indirect index, for instance, a function table index (Shuffler [74]) or the address of a function trampoline (ReRanz [70]), as code pointers to avoid expensive pointer tracking. After re-randomization, the techniques only need to update the function table while all code pointers remain immutable. With this design, leaking a code pointer will tell the attacker about the function index in the table or trampoline but not about the code layout; however, because the function index is immutable across re-randomization, attackers may re-use leaked function indices.
- **An offset to the code address as code pointer:** This design also avoids pointer tracking by having an immutable offset from the random version address for referring to a function, as in CodeArmor [12]. The re-randomization is efficient because it only requires randomizing the version base address, and does not require any update of pointers. With this design, leaking a code pointer will only tell the attacker about the
offset to select a specific function; however, the offset is immutable across re-randomization, so attackers may re-use leaked function offsets.

2.3 Attacks against Continuous Re-randomization

Based on our analysis of continuous re-randomization techniques, we define two attacks (A3 and A4) against them.

A3: Low-profile JIT-ROP. This attack class does not trigger re-randomization, either by completing the attack within a defense’s pre-defined randomization time interval or without involving any I/O system call invocations. Existing defenses utilize one of timing [12, 23, 27, 74], amount of transmitted data by output system calls [70], or I/O system call boundary [8] as a trigger for layout re-randomization. Therefore attacks within the application boundary, such as code-reuse attacks in Javascript engines of web browsers where both information-leak followed by control-flow hijacking attack may complete faster than the re-randomization timing threshold (e.g., < 50 msec) or not interact with any I/O system calls (e.g., leaking pointers via type-confusion vulnerabilities). This bypasses these triggering conditions, leaving the code layout unchanged within the given interval and vulnerable to JIT-ROP.

A4: Code pointer offsetting. Even with re-randomization, techniques might be susceptible to a code pointer offsetting attack if code pointers are not protected from having arithmetic operations applied by attackers [8, 12]. An attacker may trigger a vulnerability to apply arithmetic operations to an existing code pointer. Particularly, in techniques that directly use a code address [8] or a code offset [12], the target could be even a ROP gadget if the attacker knows the gadgets offset beforehand. Ward _et al._ [71] has demonstrated that this attack is possible against TASR. A4 shows that maintaining a fixed code layout across re-randomizations and not protecting code pointers lets attackers perform arithmetic operations over pointers, allowing access to other ROP gadgets.

3 THREAT MODEL AND ASSUMPTIONS

Mardu’s threat model follows that of similar re-randomization works [8, 12, 74]. We assume attackers can perform arbitrary read/write by exploiting software vulnerabilities in the victim program. We also assume all attack attempts run in a local machine such that attacks may be performed any number of times within a short time period (e.g., within a millisecond).

Our trusted computing base includes the OS kernel, the loading/linking process such that attackers cannot intervene to perform any attack before a program starts, and that system userspace does not have any memory region that is both writable and executable or both readable and executable (e.g., DEP (W⊕X) and XoM (R⊕X) are enabled). We assume all hardware is trusted and attackers do not have physical access. This includes trusting Intel Memory Protection Keys (MPK) [37], a mechanism that provides XoM.

Mardu does not support native MPK applications that directly use wrpkr instructions. We further analyze the security of leveraging protection keys for userspace in §7. Finally, hardware attacks (e.g., side-channel attacks, Spectre [40], Meltdown [45]) are out of scope.

4 MARDU DESIGN

We begin with the design overview of Mardu in §4.1 and then go into further detail of the Mardu compiler in §4.2 and kernel in §4.3.

4.1 Overview

This section presents the overview of Mardu, along with its design goals, challenges, and outlines its architecture.
4.1.1 Goals. Our goal in designing Mardu is to shore up the current state-of-the-art to enable a practical code randomization. More specifically, our design goals are as follows:

Scalability. Most proposed exploit mitigation mechanisms overlook the impact of required additional system resources, such as memory or CPU usage, which we consider a scalability factor. This is crucial for applying a defense system-wide, and is even more critical when deploying the defense in pay-as-you-go pricing on the Cloud. Oxymoron [6] and PageRando [15] are the only defenses, to our knowledge, that allow code sharing of randomized code. No other re-randomization defenses support code sharing thus they require significantly more memory. Additionally, most re-randomization defenses [12, 70, 74] require per-process background threads, which not only cause additional CPU usage but also contention with the application process. As a result, approaches requiring per-process background threads show significant performance overhead as the number of processes increases. Therefore, to apply Mardu system-wide, we design Mardu to not require significant additional system resources, for instance, additional processes/threads or significant additional memory.

Performance. Many prior approaches [12, 16, 18, 74] demonstrate decent runtime performance on average (<10%, e.g., <3.2% in CodeArmor); however, they also show corner cases that are remarkably slow (i.e., >55%, see Worst column in Table 1). We design Mardu to be competitive with prior code randomization approaches in terms of performance overhead in order to show the security benefits Mardu provides are worth the minor tradeoff. In particular, we aim to ensure that Mardu’s performance is acceptable even in its worst case outliers across a variety of application types.

Security. No prior solutions provide a comprehensive defense against existing attacks (see §2). Systems with only load-time ASLR are susceptible to code leaks (A1) and code inference (A2). Systems applying re-randomization are still susceptible to low-profile attacks (A3) and code pointer offsetting attacks (A4). Mardu aims to either defeat or significantly limit the capability of attackers to launch code-reuse attacks spanning from A1 to A4 to provide a best-effort security against known existing attacks.

4.1.2 Challenges. Naïvely combining the best existing defense techniques is simply not possible due to conflicts in their requirements. These are the challenges Mardu addresses.

Tradeoffs in security, performance, and scalability. An example of the tradeoff between security and performance is having fine-grain ASLR with re-randomization. Although such an approach can defeat code pointer offsetting (A4), systems cannot apply such protection because re-randomization must finish quickly to meet performance goals to also defeat low-profile attacks (A3). An example of the tradeoff between scalability and performance is having a dedicated process/thread for running the defense and performing the re-randomization. Usage of a background thread results in a drawback in scalability by occupying a user’s CPU core, which can no longer be used for useful user computation. This tradeoff is exaggerated even more by systems that require one-to-one matching of a background randomization thread per worker thread. Therefore, a good design must find a breakthrough to meet all of aforementioned goals.

Conflict in code-diversification vs. code-sharing. Layout re-randomization requires diversification of code layout per-process, and this affects the availability of code-sharing. The status quo is that code sharing cannot be applied to any existing re-randomization approaches, making defenses unable to scale to protect many-process applications. Although Oxymoron [6] enables both diversification and sharing of code, it does not consider re-randomization, nor use a sufficient randomization granularity (page-level).

4.1.3 Architecture. We design Mardu to gain insight on how to properly balance and integrate opposing goals of security, scalability, and performance together. We introduce our approach for satisfying each aspect below:

Scalability: Sharing randomized code. Mardu manages the cache of randomized code in the kernel, making it capable of being mapped to multiple userspace processes, not readable from userspace, and not requiring any additional memory.
Scalability: System-wide re-randomization. Since code is shared between processes in Mardu, per-process randomization, which is CPU intensive, is not required; rather a single process randomization is sufficient for the entire system. For example, if a worker process of NGINX server crashes, it re-randomizes upon exit all associated mapped executables (e.g., libc.so of all processes, and all other NGINX workers).

Scalability: On-demand re-randomization. Mardu re-randomizes code only when suspicious activity is detected. This design is advantageous because Mardu does not rely on per-process background threads nor a re-randomization interval unlike prior re-randomization approaches. Particularly, Mardu re-randomization is performed in the context of a crashing process, thereby not affecting the performance of other running processes.

Performance: Immutable code pointers. The described design decisions for scalability also help reduce performance overhead. Mardu neither tracks nor encrypts code pointers so code pointers are not mutated upon re-randomization. While this design choice minimizes performance overhead, other security features (e.g., XoM, trampoline, and shadow stack) in Mardu ensure a comprehensive ROP defense.

Security: Detecting suspicious activities. Mardu considers any process crash or code probing attempt as a suspicious activity. Mardu’s use of XoM makes any code probing attempt trigger a process crash and consequently system-wide re-randomization. Therefore, Mardu counters direct memory disclosure attacks as well as code inference attacks requiring initial code probing [53, 60]. We use Intel MPK [37] to implement XoM for Mardu; leveraging MPK makes hiding, protecting, and legitimately using code much more efficient and simple with page-permissions compared to virtualization-based designs that require nested address translation during runtime.

Security: Preventing code & code pointer leakage. In addition to system-wide re-randomization, Mardu minimizes the leakage of code and code pointers. Besides XoM, we use three techniques. First, Mardu applications always go through a trampoline region to enter into or return from a function. Thus, only trampoline addresses are stored in memory (e.g., stack and heap) while non-trampoline code pointers remain hidden. Mardu does not randomize the trampoline region so that tracking and patching are not needed upon re-randomization. Second, Mardu performs fine-grained function-level randomization within an executable (e.g., libc.so) to completely disconnect any correlation between trampoline addresses and code addresses. This provides high entropy (i.e., roughly $n!$ where n is the number of functions). Also, unlike re-randomization approaches that rely on shifting code base addresses [8, 12, 47], Mardu is not susceptible to code pointer offsetting attacks (A4). Finally, Mardu stores return addresses—precisely, trampoline addresses for return—in a shadow stack. This design makes stack pivoting practically infeasible.
Design overview. As shown in Figure 1, Mardu is composed of compiler and kernel components. The Mardu compiler enables trampolines and a shadow stack to be used. The Mardu compiler generates PC-relative code so that randomized code can be shared by multiple processes. Also, the compiler generates and attaches additional metadata to binaries for efficient patching.

The Mardu kernel is responsible for choreographing the runtime when a Mardu enabled executable is launched. The kernel extracts and loads Mardu metadata into a cache to be shared by multiple processes. This metadata is used for first load-time randomization as well as re-randomization. The randomized code is cached and shared by multiple processes; while allowing sharing, each process will get a different random virtual address space for the shared code. The Mardu kernel prevents read operations of the code region, including the trampoline region, using XoM such that trampoline addresses do not leak information about non-trampoline code. Whenever a process crashes (e.g., XoM violation), the Mardu kernel re-randomizes all associated shared code such that all relevant processes are re-randomized to thwart an attacker’s knowledge immediately.

4.2 Mardu Compiler

The Mardu compiler generates a binary able to 1) hide its code pointers, 2) share its randomized code among processes, and 3) run under XoM. Mardu uses its own calling convention using a trampoline region and shadow stack.

4.2.1 Code Pointer Hiding.

Trampoline. Mardu hides code pointers without paying for costly runtime code pointer tracking. The key idea for enabling this is to split a binary into two regions in process memory: trampoline and code regions (as shown in Figure 2 and Figure 3). A trampoline is an intermediary call site that moves control flow securely to/from a function body, protecting the XoM hidden code region. There are two kinds of trampolines: call and return trampolines. A call trampoline is responsible for forwarding control flow from an instrumented call to the code region function entry, while a return trampoline is responsible for returning control flow semantically to the caller. Each function has one call trampoline to its function entry, and each call site has one return trampoline returning to the following instruction of the caller. Since trampolines are stationary, Mardu does not need to track code pointers upon re-randomization because only stationary call trampoline addresses are exposed to memory.

Shadow stack. Unlike the x86 calling convention using call/ret to store return addresses on the stack, Mardu instead stores all return addresses in a shadow stack and leaves data destined for the regular stack untouched. Effectively, this protects all backward-edges. A Mardu call pushes a return trampoline address onto the shadow stack and jumps to a call trampoline; an instrumented ret directly jumps to the return trampoline address at the current top of the shadow stack. Mardu assumes a 64-bit address space and ability to leverage a segment register (e.g., %gs); the base address of the Mardu shadow stack is randomized by ASLR and is hidden in %gs, which cannot be modified in userspace and will never be stored in memory.

Running example. Figure 2 is an example of executing a Mardu-compiled function foo(), which calls a function bar() and then returns. Every function call and return goes through trampoline code which stores the return address to a shadow stack. The body of foo() is entered via its call trampoline 1. Before foo() calls bar(), the return trampoline address is stored onto the shadow stack. Control flow then jumps to bar()’s trampoline 2, which will jump to the function body of bar() 3. bar() returns to the address in the top of the shadow stack, which is the return trampoline address 4. Finally, the return trampoline returns to the instruction following the call in foo() 5.

4.2.2 Enabling Code Sharing among Processes.

PC-relative addressing. The Mardu compiler generates PC-relative (i.e., position-independent) code so it can be shared amongst processes loading the same code in different virtual addresses. The key challenge here
is **how to incorporate PC-relative addressing with randomization**. Mardu randomly places code (at function granularity) while trampoline regions remain stationary. This means any code using PC-relative addressing must be correspondingly patched once its randomized location is decided. In Figure 2, all jump targets between the trampoline and code, denoted in yellow rectangles, are PC-relative and must be adjusted. All data addressing instructions (e.g., accessing global data, GOT, etc.) must also be adjusted.

Fixup information for patching. With this policy, it is necessary to keep track of these instructions to patch them properly during runtime. Similar to Compiler-assisted Code Randomization (CCR) [42], Mardu makes its runtime patching process simple and efficient by leveraging the LLVM compiler to collect and generate metadata, like fixups and relocations, into the binary describing exact locations for patching and their file-relative offset. Reading this information from the newly generated section in the executable, this fixup information makes patching as simple as just adjusting PC-relative offsets for given locations (see Figure 3). However, CCR only uses that information once, relying on a binary rewriter for a single static user-side binary executable randomization at function and basic-block granularity. Contrary to CCR, Mardu leverages the metadata added to allow processes to behave as runtime code rewriters, and re-randomize on-demand. The overhead of runtime patching is negligible because Mardu avoids “stopping the world” when patching the code to maintain internal consistency compared to other approaches, putting the burden on the crashed process. We elaborate on the patching process in §4.3.2.

Supporting a shared library. A call to a shared library is treated the same as a normal function call to preserve Mardu’s code pointer hiding property; that is, Mardu refers to the call trampoline via procedure linkage table (PLT) or global offset table (GOT) whose address is resolved by the dynamic linker as usual. While Mardu does not specifically protect GOT, we assume that the GOT is already protected. For example, Fedora systems that support MPK have been hardened to enforce lazy binding will use a read-only GOT [22].
4.3 Mardu Kernel

The Mardu kernel randomizes code at load-time and runtime. It maps already-randomized code, if it exists, to the address space of a newly fork-ed process. When an application crashes, Mardu re-randomizes all mapped binaries associated with the crashing process and reclaims the previous randomized code from the cache after all processes are moved to a newly re-randomized code. Mardu prevents direct reading of randomized code from userspace using XoM. Mardu is also responsible for initializing a shadow stack for each task\(^1\).

4.3.1 Process Memory Layout

Figure 3 illustrates the memory layout of two Mardu processes: websrv (top left) and dbsrv (top right). The randomized code in kernel (0xffffffff811f7000) is shared by multiple processes, which is mapped to its own virtual base address (0x7fa67841a000 for websrv and 0x7f2bedff000 for dbsrv).

![Diagram of Mardu process memory layout]

Executeable: websrv

MARDU Userspace Process

Executable: dbsrv

In-Kernel Randomized Code Cache

MARDU-Compiled Binary

\(^1\)In this paper, the term task denotes both process and thread as the convention in Linux kernel.
4.3.2 Fine-Grain Code Randomization.

Allocating a virtual code region. For each randomized binary, the Mardu kernel allocates a 2 GB virtual address region\(^2\) (Figure 3\(^{\circ}\)), which will be mapped to userspace virtual address space with coarse-grained ASLR (Figure 3\(^{\circ}\))\(^3\). The Mardu kernel positions the trampoline code at the end of the virtual address region and returns the start address of the trampoline via `mmap`. The trampoline address remains static throughout program execution even after re-randomization.

Randomizing the code within the virtual region. To achieve a high entropy, the Mardu kernel uses fine-grained randomization within the allocated virtual address region. Once the trampoline is positioned, the Mardu kernel randomly places non-trampoline code within the virtual address region; Mardu decides a random offset between the code and trampoline regions. Once the code region is decided, Mardu permutes the function order within the code region to further increase entropy. As a result, trampoline addresses do not leak information on non-trampoline code and an adversary cannot infer any actual codes' location from the system information (e.g., `/proc/<pid>/maps`) as they will get the same mapping information for the entire 2 GB region.

Patching the randomized code. After permuting functions, the Mardu kernel patches PC-relative instructions accessing code or data according to the randomization pattern. This patching process is trivial at runtime; the Mardu compiler generates fixup location information and the Mardu kernel re-calculates and patches PC-relative offsets of instructions according to the randomized function location. Note that patching includes control flow transfer between trampoline and non-trampoline code, global data access (i.e., `.data`, `.bss`), and function calls to other shared libraries (i.e., PLT/GOT).

4.3.3 Randomized Code Cache. The Mardu kernel manages a cache of randomized code. When a userspace process tries to map a file with executable permissions, the Mardu kernel first looks up if there already exists a randomized code of the file. If cache hits, the Mardu kernel maps the randomized code region to the virtual address of the requested process. Upon cache miss, it performs load-time randomization as described earlier. The Mardu kernel tracks how many times the randomized code region is mapped to userspace. If the reference counter is zero or system memory pressure is high, the Mardu kernel evicts the randomized code. Thus, in normal cases without re-randomization, Mardu randomizes a binary file only once (load-time). In Mardu, the randomized code cache is associated with the inode cache. Consequently, when the inode is evicted from the cache under severe memory pressure, its associated randomized code is also evicted.

4.3.4 Execute-Only Memory (XoM). We designed XoM based on Intel MPK [37]\(^4\). With MPK, each page is assigned to one of 16 domains under a protection key, which is encoded in a page table entry. Read and write permissions of each domain can be independently controlled through an MPK register. When randomized code is mapped to userspace, the Mardu kernel configures the XoM domain to be non-accessible (i.e., neither readable nor writable in userspace), and assigns code memory pages to the created XoM domain, enforcing execute-only permissions. If an adversary tries to read XoM-protected code memory, re-randomization is triggered via the raised XoM violation. Unlike EPT-based XoM designs [61] that require system resources to enable virtualization as well as have inherent overhead from nested address translation, our MPK-based design does not impose such runtime overhead.

4.3.5 On-Demand Re-randomization.

Triggering re-randomization. When a process crashes, Mardu triggers re-randomization of all binaries

\(^2\) We note that, for the unused region, we map all those virtual addresses to a single abort page that generates a crash when accessed to not to waste real physical memory and also detect potential attack attempts.

\(^3\) We choose 2 GB because in x86-64 architecture PC-relative addressing can refer to a maximum of ±2 GB range from `%rip`.

\(^4\) As of this writing, Intel Xeon Scalable Processors [38] and Amazon EC2 C5 instance [3] support MPK. Other than x86, ARM AArch64 architecture also supports execute-only memory [4].
Fig. 4. Re-randomization procedure in MARDU. Once a new re-randomized code is populated, the MARDU kernel maps new code and trampoline in order. This makes threads crossing the new trampoline migrate to the newly re-randomized code. After it is guaranteed that all threads are migrated to the new code, MARDU reclaims the old code. Unlike previous continuous per-process re-randomization approaches, our re-randomization is time-bound, efficient, and system-wide.

mapped to the crashing process. Since MARDU re-randomization thwarts attacker’s knowledge (i.e., each attempt is an independent trial), an adversary must succeed in her first try without crashing, which is practically infeasible.

Re-randomizing code. Upon re-randomization, the MARDU kernel first populates another copy of the code (e.g., libc.so) in the code cache and freshly randomizes it (Figure 4). MARDU leaves trampoline code at the same location to avoid mutating code pointers but it does randomly place non-trampoline code (via new random offset) such that the new version does not overlap with the old one. Then, it permutes functions in the code. Thus, re-randomized code is completely different from the previous one without changing trampoline addresses.

Live thread migration without stopping the world. Re-randomized code prepared in the previous step is not visible to userspace processes because it is not yet mapped to userspace. To make it visible, MARDU first maps the new non-trampoline code to the application’s virtual address space, Figure 4 2. The old trampolines are left mapped, making new code not reachable. Once MARDU remaps the virtual address range of the trampolines to the new trampoline code by updating corresponding page table entries, the new trampoline code will transfer control flow to the new non-trampoline code. Hereafter any thread crossing the trampoline migrates to the new non-trampoline code without stopping the world.

Safely reclaiming the old code. MARDU can safely reclaim the code only after all threads migrate to the new code. MARDU uses reference counting for each randomized code to check if there is a thread accessing the old code. After the new trampoline code is mapped, MARDU sets a reference counter of the old code to the number of all runnable tasks that map the old code. It is not necessary to wait for the migration of a non-runnable, sleeping task because it will correctly migrate to the newest randomized code region when it passes through the return trampoline, which refers to the new layout when it wakes up. The reference counter is decremented when a runnable task enters into the MARDU kernel due to system call or preemption. When calling a system call, the MARDU kernel will decrement reference counters of all code that needs to be reclaimed. When the task returns to userspace, it will return to the return trampoline and the return trampoline will transfer to the new code. When a task is preempted out, it may be in the middle of executing the old non-trampoline code. Thus, the MARDU kernel not only decrements reference counters but also translates %rip of the task to the corresponding address in the new code. Since MARDU permutes at function granularity, %rip translation is merely adding an offset between the old and new function locations.

5 A task in a TASK_RUNNING status in Linux kernel.
Summary. Our re-randomization scheme has three nice properties: 1) time boundness of re-randomization, 2) almost zero overhead of running process, and 3) system-wide re-randomization. Because MARDU migrates *runnable* tasks at system call and scheduling boundaries, it ensures that MARDU re-randomization will always guarantee the process to use the newly secure version of MARDU-enabled code once awoken or has crossed the system call boundary. Just as important, processes will *never* have access to the attacker exposed code ever again once crossing those boundaries. If another process crashes in the middle of re-randomization, MARDU will not trigger another re-randomization until the current randomization finishes. However, as soon as the new randomized code is populated 1, a new process will map the new code immediately. Therefore, the old code cannot be observed more than once. The MARDU kernel populates a new randomized code in the context of a crashing process. All other runnable tasks only additionally perform reference counting or translation of $\%$rip to the new code. Thus, its runtime overhead for runnable tasks is negligible. To the best of our knowledge, MARDU is the first system to perform system-wide re-randomization allowing code sharing.

5 IMPLEMENTATION

We implemented MARDU on the Linux x86-64 platform. The MARDU compiler is implemented using LLVM 6.0.0 and the MARDU kernel is implemented based on Linux kernel 4.17.0 modifying 3549 and 4009 lines of code (LOC), respectively. We used musl 1libc 1.1.20 [1], a fast, lightweight C standard library for Linux. We chose musl libc because glibc is not able to be compiled with LLVM/Clang. We manually wrapped all inline assembly functions present in musl to allow them to be properly identified and instrumented by the MARDU compiler. We modified 164 LOC in musl libc for the wrappers.

5.1 MARDU Compiler

Trampoline. The MARDU compiler is implemented as backend target-ISA (x86) specific MachineFunctionPass. This pass instruments each function body as described in §4.2.

Re-randomizable code. The following compiler flags are used by the MARDU compiler: -fPIC enables instructions to use PC-relative addressing; -fomit-frame-pointer forces the compiler to relinquish use of register $\%$rbp, as register $\%$rbp is repurposed as the stack top index of a shadow stack in MARDU; -mrelax-all forces the compiler to always emit full 4-byte displacement in the executable, such that the MARDU kernel can use the full span of memory within our declared 2GB virtual address region and maximize entropy when performing patching; lastly, the MARDU compiler ensures code and data are segregated in different pages via using -fno-jump-tables to prevent false positive XoM violations.

5.2 MARDU Kernel

Random number generation. MARDU uses a cryptographically secure random number generator in Linux based on hardware instructions (*i.e.*, rdrand) in modern Intel architectures. Alternatively, MARDU can use other secure random sources such as /dev/random or get_random_bytes().

5.3 Limitation of Our Prototype Implementation

Assembly Code. MARDU does not support inline assembly as in musl; however, this could be resolved with further engineering. Our prototype uses wrapper functions to make assembly comply with MARDU calling convention.

Setjmp and exception handling. MARDU uses a shadow stack to store return addresses. Thus, functions such as setjmp, longjmp, and libunwind that directly manipulate return addresses on stack are not supported by our
prototype. Adding support for these functions could be resolved by porting these functions to understand our shadow stacks semantics, as our shadow stack is a variant of compact, register-based shadow stack [11].

C++ support. Our prototype does not support C++ applications since we do not have a stable standard C++ library that is musl-compatible.

6 EVALUATION

We evaluate Mardu by answering these questions:

- How secure is Mardu, when presented against current known attacks on randomization? (§6.1)
- How much performance overhead does the needed instrumentation of Mardu impose, particularly for compute-intensive benchmarks in a typical runtime without any attacks? (§6.2)
- How scalable is Mardu in terms of load time, re-randomization time with and without on-going attacks, and memory savings, particularly for concurrent processes such as in a real-world network facing server? (§6.3)

Applications. We evaluate the performance overhead of Mardu using SPEC CPU2006. This benchmark suite has realistic compute-intensive applications, ideal to see worst-case performance overhead of Mardu. We tested all 12 C language benchmarks using input size ref; we excluded C++ benchmarks as our current prototype does not support C++. We choose SPEC CPU2006 over SPEC CPU2017 to easily compare Mardu to prior relevant re-randomization techniques. We test performance and scalability of Mardu on a complex, real-world multi-process web server with NGINX.

Experimental setup. All programs are compiled with optimization -O2 and run on a 24-core (48-hardware threads) machine equipped with two Intel Xeon Silver 4116 CPUs (2.10 GHz) and 128 GB DRAM.

6.1 Security Evaluation

We analyze the resiliency of Mardu against existing attacker models with load-time randomization (A1–A2, §6.1.1) and continuous re-randomization, (A3–A4, §6.1.2). Then, to illustrate the effectiveness of Mardu for a wider class of code-reuse attacks beyond ROP, we discuss the threat model of NEWTON [68] with Mardu (§6.1.3).

6.1.1 Attacks against Load-Time Randomization.

Against JIT-ROP attacks (A1). Mardu asserts permissions for all code areas and trampoline regions as execute-only (via XoM); thereby, JIT-ROP cannot read code contents directly.

Against code inference attacks (A2). Mardu blocks code inference attacks, including BROP [9], clone-probing [47], and destructive code read attacks [53, 60] via layout re-randomization triggered by an application crash or XoM violation. Every re-randomization renders all previously gathered (if any) information regarding code layout invalid and therefore prevents attackers from accumulating indirect information. Note that attacks such as Address-Oblivious Code Reuse (AOCR) [57], do not fall into the category of A2. This attack vector’s process of control hijacking more closely resembles full-function code re-use rather than indirect exposure of code; AOCR leverages manipulation of data and function pointer corruption and does not require usage of ret gadgets.

Hiding shadow stack. Attackers with arbitrary read/write capability (A1/A2) may attempt to leak/alter shadow stack contents if its address is known. Although the location of the shadow stack is hidden behind the %gs register, attackers may employ attacks that undermine this sparse-memory based information hiding [21, 29, 50]. To prevent such attacks, Mardu reserves a 2 GB virtual memory space for the shadow stack (the same way Mardu allocates code/library space) and chooses a random offset to map the shadow stack; all other pages in the 2 GB space are mapped as an abort page. Regarding randomization entropy of shadow stack hiding, we take an example of a process that uses sixteen pages for the stack. In such a case, the possible shadow stack positions are:
of positions = \((MEMSIZE - STACKSIZE)/PAGESIZE\)

= \((2^{31} - 16 \times 2^{12})/2^{12} = 524,272\) \hspace{1cm} (1)

thereby, the probability of successfully guessing a valid shadow stack address is one in 524,272, practically infeasible. Even assuming if attackers are able to identify the 2 GB region for the shadow stack, they must also overcome the randomization entropy of the offset to get a valid address within this region (winning chance: roughly one in \(2^{31}\), as Mardu’s shadow stack can start at an arbitrary address within a page and not align to the 4K-page boundary); any incorrect probe will generate a crash, trigger re-randomization, thwarting the attack.

Entropy. Mardu applies both function-level permutation and random start offset to provide a high entropy to the randomized code layout. In particular, Mardu permutes all functions in each executable at each time of randomization. In this way, randomization entropy \(E_{\text{func}}\) depends on the number of functions in the executable \((n)\), and the entropy gain can be formulated as:

\[
E_{\text{func}} = \log_2(n!) \hspace{1cm} (2)
\]

Additionally, Mardu applies a random start offset to the code area in 2 GB space in each randomization. Because the random offset could be anywhere in 2 GB range excluding the size of trampoline region and twice the size of the program (to avoid overlapping), the entropy gain by the random offset \(E_{\text{off}}\) can be formulated as:

\[
E_{\text{off}} = \log_2(2^{31} - \\text{sizeof(trampoline)} - 2\times\text{sizeof(program)}) \hspace{1cm} (3)
\]

and the total entropy that Mardu provides is:

\[
E_{\text{Mardu}} = E_{\text{func}} + E_{\text{off}} \hspace{1cm} (4)
\]

We take an example of 470.lbm in SPEC CPU2006, a case which provides the minimum entropy in our evaluation. The program contains 16 functions, and the entire size of the program including trampoline instrumentation is less than 64 KB. In such a case, the total entropy is:

\[
E_{\text{func}} = \log_2(16!) > 44.25, \\
E_{\text{off}} = \log_2(2^{31} - 2 \times 64K) > 30.99 \\
E_{\text{Mardu}} = E_{\text{func}} + E_{\text{off}} > 74.24 \hspace{1cm} (5)
\]

Therefore, even for a small program, Mardu randomizes the code with significantly high entropy (74 bits) to render an attacker’s success rate for guessing the layout negligible.

6.1.2 Attacks against Continuous Re-randomization.

Against low-profile attacks (A3). Mardu does not rely on timing nor system call history for triggering re-randomization. As a result, neither low-latency attacks nor attacks without involving system calls are effective against Mardu. Instead, re-randomization is triggered and performed by any Mardu instrumented application process that encounters a crash (e.g., XoM violation). Nonetheless, a potential A3 vector could be one that does...
not cause any crash during exploitation (e.g., attackers may employ crash-resistant probing [21, 24, 29, 41, 50]). In this regard, Mardu places all code in execute-only memory within 2 GB mapped region. Such a stealth attack could only identify multiples of 2 GB code regions and will fail to leak any layout information.

Against code pointer offsetting attacks (A4). Attackers may attempt to launch this attack by adding/subtracting offsets to a pointer. To defend against this, Mardu decouples any correlation between trampoline function **entry** addresses and function **body** addresses (i.e., no fixed offset), so attackers cannot refer to the middle of a function for a ROP gadget without actually obtaining a valid function body address. Additionally, the trampoline region is also protected with XoM, thus attackers cannot probe it to obtain function body addresses to launch A4. Mardu limits available code-reuse targets to only exported functions in the trampoline.

6.1.3 Beyond ROP attacks.

Attack analysis with NEWTON. To measure the boundary of viable attacks against Mardu, we present a security analysis of Mardu based on the threat model set by NEWTON [68]. In this regard, we analyze possible writable pointers that can change the control flow of a program (write constraints) as well as possible available gadgets in Mardu (target constraints), which will reveal what attackers can do under this threat model. In short, Mardu allows only the reuse of exported functions via call trampolines.

For write constraints, attackers cannot overwrite real code addresses such as return addresses or code addresses in the trampoline. Mardu only allows attackers to overwrite other types of pointer memory, e.g., object pointers and pointers to the call trampoline. For target constraints, attackers can reuse only the exported functions via call trampoline. Note that a function pointer is a reusable target in any re-randomization techniques using immutable code pointers [12, 70, 74]. Although Mardu allows attackers to reuse function pointers in accessible memory (e.g., a function pointer in a structure), such live addresses will never include real code addresses or return addresses, and will be limited to addresses only referencing call trampolines. Under these write and target constraints, inferring the location of ROP gadgets from code pointers (e.g., leaking code addresses or adding an offset) is not possible.

6.2 Performance Evaluation

Runtime performance overhead with SPEC CPU2006. Figure 5 shows the performance overhead of SPEC with Mardu trampoline only instrumentation (which does not use a shadow stack) as well as with a full Mardu implementation. Both of these numbers are normalized to the unprotected and uninstrumented baseline, compiled with vanilla Clang. Note that this performance overhead is the base incurred overhead of security hardening an application with Mardu. In the rare case, that the application were to come under attack, on-demand re-randomization would be triggered inducing additional brief performance overheads. We discuss the performance overhead of Mardu under active attack in §6.3.
Figure 5 does not include a direct performance comparison to other randomization techniques as Mardu is substantially different in how it implements re-randomization and the source code of closely related systems, such as Shuffler [74] and CodeArmor [12], is not publicly available. It is not based on timing nor system call history compared to previous works. This peculiar approach allows Mardu’s average overhead to be comparable to the fastest re-randomization systems and its worst-case overhead significantly better than similar systems. The average overhead of Mardu is 5.5%, and the worst-case overhead is 18.3% (perlbench); in comparison to Shuffler [74] and CodeArmor [12], whose reported average overheads are 14.9% and 3.2%, and their worst-case overhead are 45% and 55%, respectively (see Table 1). TASR [8] shows a very practical average overhead of 2.1%; however, it has been reported by Shuffler [74] and ReRanz [70] that TASR’s overhead against a more realistic baseline (not using compiler flag -Og) is closer to 30-50% overhead. This confirms Mardu is capable of matching if not slightly improving the performance (especially worst-case) overhead, while casting a wider net in terms of known attack coverage.

Mardu’s two sources of runtime overhead are trampolines and the shadow stack. Mardu uses a compact shadow stack without a comparison epilogue whose sole purpose is to secure return addresses. Specifically, only 4 additional assembly instructions are needed to support our shadow stack. Therefore we show the trampoline only configuration to clearly differentiate the overhead contribution of each component. Figure 5 shows Mardu’s shadow stack overhead is negligible with an average of less than 0.3%, and in the noticeable gaps, adding less than 2% in perlbench, gobmk, and sjeng. The overhead in these three benchmarks comes from the higher frequency of short function calls, making shadow stack updates not amortize as well as in other benchmarks. In the cases where Full Mardu is actually faster than the Trampoline only version (e.g., bzip2, gcc, and h264ref), we investigated and found that our handcrafted assembly for integrating the trampolines with the regular stack in the Trampoline only version can inadvertently cause elevated amounts of branch-misses, leading to the expected performance slowdown.

6.3 Scalability Evaluation

Runtime performance overhead with NGINX. NGINX is configured to handle a max of 1024 connections per processor, and its performance is observed according to the number of worker processes. wrk [28] is used to generate HTTP requests for benchmarking. wrk spawns the same number of threads as NGINX workers and each wrk thread sends a request for a 6745-byte static html. To see worst-case performance, wrk is run on the same machine as NGINX to factor out network latency unlike Shuffler. Figure 6 presents the performance of NGINX with and without Mardu for a varying number of worker processes. The performance observed shows that Mardu exhibits very similar throughput to vanilla. Mardu incurs 4.4%, 4.8%, and 1.2% throughput degradation on average, at peak (12 threads), and at saturation (24 threads), respectively. Note that Shuffler [74] suffers from overhead from its per-process shuffling thread; just enabling Shuffler essentially doubles CPU usage. Even in their NGINX experiments with network latency (i.e., running a benchmarking client on a different machine), Shuffler shows 15-55% slowdown. This verifies Mardu’s design that having a crashing process perform system-wide re-randomization, rather than a per-process background thread as in Shuffler, scales better.

Load-time randomization overhead. We categorize load-time to cold or warm load-time whether the in-kernel code cache (in Figure 3) hits or not. Upon a code cache miss (i.e., the executable is first loaded in a system), Mardu performs initial randomization including function-level permutation, start offset randomization of the code layout, and loading & patching of fixup metadata. As Figure 7 shows, all C SPEC benchmarks showed negligible overhead averaging 95.9 msec. gcc, being the worst-case, takes 771 msec; it requires the most (291,699 total) fixups relative to other SPEC benchmarks, with ≈9,372 fixups on average. perlbench and gobmk are the only other outliers, having 103,200 and 66,900 fixups, respectively; all other programs have <<35K fixups (refer to Table 2). For NGINX, we observe that load time is constant (61 msec) for any number of specified worker
processes. Cold load-time is roughly linear to the number of trampolines. Upon a code cache hit, Mardu simply maps the already-randomized code to a user-process’s virtual address space. Therefore we found that warm load-time is negligible. Note that, for a cold load-time of musl takes about 52 msec on average. Even so, this is a one time cost; all subsequent warm load-time accesses of fetching musl takes below 1µsec, for any program needing it. Thus, load time can be largely ignored.

Re-randomization latency. Figure 8 presents time to re-randomize all associated binaries of a crashing process. The time includes creating & re-randomizing a new code layout, and reclaiming old code (1-4 in Figure 4). We emulate an XoM violation by killing the process via a SIGBUS signal and measured re-randomization time inside the kernel. The average latency of SPEC is 6.2 msec. The performance gained between load-time and re-randomization latency is from Mardu taking advantage of metadata being cached from load-time, meaning no redundant file I/O penalty is incurred. To evaluate the efficiency of re-randomization on multi-process applications, we measured the re-randomization latency with varying number of NGINX worker processes up to 24. We confirm latency is consistent regardless of number of workers (5.8 msec on average, 0.5 msec std. deviation).

Re-randomization overhead under active attacks. In addition, a good re-randomization system should exhibit good performance not only in its idle state but also under stress from active attacks. To evaluate this, we stress test Mardu under frequent re-randomization to see how well it can perform, assuming a scenario that Mardu is under attack. In particular, we measure the performance of SPEC benchmarks while triggering frequent re-randomization. We emulate the attack by running a background application, which continuously crashes at the given periods: 1 sec, 100 msec, 50 msec, 10 msec, and 1 msec. SPEC benchmarks and the crashing application are linked with the Mardu version of musl, forcing Mardu to constantly re-randomize musl and potentially incur performance degradation on other processes using the same shared library. In this experiment, we choose three representative benchmarks, milc, sjeng, and gobmk, that Mardu exhibits a small, medium, and large overhead in an idle state, respectively. Figure 9 shows that the overhead is consistent, and in fact, is very close to the performance overhead in the idle state observed in Figure 5. More specifically, all three benchmarks differ by less than 0.4% at a 1 sec re-randomization interval. When we decrease the re-randomization period to 10 msec and 1 msec, the overhead is quickly saturated. Even at 1 msec re-randomization frequency, the additional overhead is under 6%. These results show that Mardu provides performant system-wide re-randomization even under active attack.

File size overhead. Figure 10 and Table 2 show how much binary files increase with Mardu compilation. In our implementation, file size increase comes from transforming the traditional x86-64 calling convention with the one designed for Mardu (besides calls to outside libraries). On average, Mardu compilation with trampolines increases the file size by 66%. One would assume that applications with more call sites incur a higher overhead as we are adding 5 instructions for every call and 4 instructions for every retq (e.g., perlbench, gcc, milc, & gobmk are the only benchmarks with over 100% increase, being 108%, 110%, 101%, & 104% respectively).
Fig. 9. Overhead varying re-randomization frequency

Fig. 10. File size increase with MARDU compilation

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Call Tr.</th>
<th>Ret Tr.</th>
<th>Total</th>
<th>Call Tr.</th>
<th>Ret Tr.</th>
<th>Metadata</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>perlbench</td>
<td>1596</td>
<td>39174</td>
<td>103200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gcc</td>
<td>66</td>
<td>926</td>
<td>1888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mcf</td>
<td>23</td>
<td>94</td>
<td>325</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>milc</td>
<td>234</td>
<td>3531</td>
<td>7256</td>
<td>110688</td>
<td>313620</td>
<td>424308</td>
<td></td>
</tr>
<tr>
<td>gobmk</td>
<td>2388</td>
<td>22880</td>
<td>41632</td>
<td>726176</td>
<td>3085208</td>
<td>3811384</td>
<td></td>
</tr>
<tr>
<td>hmmer</td>
<td>452</td>
<td>5145</td>
<td>9925</td>
<td>139216</td>
<td>574446</td>
<td>713662</td>
<td></td>
</tr>
<tr>
<td>sjeng</td>
<td>129</td>
<td>1368</td>
<td>5418</td>
<td>58912</td>
<td>250234</td>
<td>309146</td>
<td></td>
</tr>
<tr>
<td>libquantum</td>
<td>1596</td>
<td>39174</td>
<td>103200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h264ref</td>
<td>508</td>
<td>5874</td>
<td>14524</td>
<td>278240</td>
<td>714629</td>
<td>992869</td>
<td></td>
</tr>
<tr>
<td>lhm</td>
<td>16</td>
<td>75</td>
<td>351</td>
<td>1920</td>
<td>16549</td>
<td>18469</td>
<td></td>
</tr>
<tr>
<td>sphinx3</td>
<td>308</td>
<td>4958</td>
<td>8010</td>
<td>103920</td>
<td>409914</td>
<td>513734</td>
<td></td>
</tr>
<tr>
<td>NGINX</td>
<td>1497</td>
<td>15004</td>
<td>18984</td>
<td>416736</td>
<td>1309708</td>
<td>1726444</td>
<td></td>
</tr>
<tr>
<td>musl libc</td>
<td>4400</td>
<td>10009</td>
<td>7594</td>
<td>192153</td>
<td>1238071</td>
<td>1430224</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Breakdown of MARDU instrumentation

- **Runtime memory savings.** While there is an upfront one-time cost for instrumenting with MARDU, the savings greatly outweigh this. To illustrate, we show a typical use case of MARDU in regards to shared code. musl is
≈800 KB in size, instrumented is 2 MB. Specifically, musl has 14K trampolines and 7.6K fixups for PC-relative addressing, the total trampoline size is 190 KB and the amount of loaded metadata is 1.2 MB (Table 2). Since Mardu supports code sharing, only one copy of libc is needed for the entire system. Backes et al. [6] and Ward et al. [71] also highlighted the code sharing problem in randomization techniques and reported a similar amount of memory savings by sharing randomized code. Finally, note that the use of our shadow stack does not increase the runtime memory footprint beyond the necessary additional memory page allocated to support the shadow stack and the increase in code size from our shadow stack instrumentation. Mardu solely relocates return addresses from the normal stack to the shadow stack.

System-wide Performance Estimation. Deploying Mardu system-wide for all applications and all shared libraries requires additional engineering effort of recompiling the entire Linux distribution. Instead, we get an estimate of how Mardu would perform on a regular Linux server during boot time. We obtain this estimate based on the fact that Mardu’s load-time overhead increases linearly with the total number of functions and call sites present in an application or library. We calculate the estimated boot overhead if the entire system was protected by Mardu. Referencing Figure 2, Mardu requires one trampoline per function containing one fixup, and one return trampoline per callsite containing three fixups. In addition, all PC-relative instructions must be patched. Therefore the total number of fixups to be patched is as follows:

\[\text{Total \# Fixups} = \# \text{Functions} + (\# \text{Callsites} \times 3) + \# \text{PC relative Instructions} \]

(7)

Extrapolating from Mardu’s load-time randomization overhead in Figure 7, where gcc has most fixups at 291,699 and takes 771 ms, this makes each fixup take approximately 2.6 μsec. We recorded all executables launched as well as all respective loaded libraries in our Linux server to calculate the additional overhead imposed by Mardu during boot time. We included all programs run within the first 5 minutes of boot time as well as looking at the current system load. In five minutes after the system booting, we recorded a total of 117 no longer active processes and recorded 265 currently active processes, using a total of 784 unique libraries. The applications contained a total of 8,862 functions, a total of 472,530 callsites, and 415,951 total PC-relative instructions. Using Equation 7 from above, this gave a total of 1,842,403 fixups if all launched applications were Mardu enabled. The libraries contained a total of 223,415 functions, a total of 4,450,488 callsites, and 2,514,676 total PC-relative instructions; this gave a total of 16,089,555 fixups for shared libraries. Using our estimation from gcc, we can approximate that patching all fixups including both application fixups and shared library fixups (a total of 17,931,958 fixups) for a Mardu enabled Linux server will take roughly ≈46.6 additional seconds, compared to a vanilla boot. To give a little more insight, application fixups contribute only ≈4.8 seconds of delay; the majority of overhead comes from randomization of the shared libraries. However, note that this delay is greatly amortized as many libraries are shared by a large number of applications, compared to the scenario where each library is not shared (e.g., statically-linked) and needs a separate randomized copy for each application requiring it.

System-wide Memory Savings Estimation. Similarly, we give a system-wide snapshot of memory savings observed when Mardu’s randomized code sharing is leveraged. For this, we again use the same Linux server for system-wide estimation. The vanilla total file size of 784 unique libraries is approximately 787 MB. From our scalability evaluation, Figure 10, showing that Mardu roughly increases file size by 66% on average, this total file size would grow to 1,306 MB if all were instrumented with Mardu. While this does appear to be a large increase, it is a one time cost as code sharing is enabled under Mardu. From our Linux server having 265 processes, 127 of had mapped libraries. If code sharing is not supported, each process needs its own copy of a library in memory. We counted each library use and multiplied by its size to get the total non-sharing memory usage. For our Linux server, this non-sharing would incur approximately a 8.8 GB overhead. Meaning, Mardu provides approximately
7.5 GB memory savings through its inherent code sharing design. This memory savings is compared to if these libraries were individually and separately statically linked to each of the running processes.

To get how many times each library is shared by multiple processes, we analyzed each process’s memory mapping on our Linux server by investigating /proc/{PID}/maps. Figure 11 presents the active reference count for the 25 most linked shared libraries on our idle Linux server. The 25 most linked shared libraries are referenced over ≈106 times on average, showing that dynamically linked libraries really do save a lot of memory compared to a non-shared approach. For the same 25 most linked shared libraries, we also demonstrate in Figure 12 the estimated memory savings obtained for each of those libraries if Mardu was used instead of an approach that does not support sharing of code. Notice that some of our biggest memory savings come from libc.so and libm.so, very commonly used libraries that Mardu saves almost 0.80 GB and 0.25 GB of memory for, respectively.

We also show the entire system snapshot (including all 784 unique libraries) in the form of a CDF for both the unique library link count in Figure 13 and cumulative memory savings in Figure 14 if Mardu were to be applied and used system wide for all dynamically linked libraries. From Figure 13, it can be seen that approximately 150 libraries are in the 75th percentile of link count.
7 DISCUSSION AND LIMITATIONS

Applying Mardu to Binary Programs. Although our current Mardu prototype requires access to source code, applying Mardu directly to binary programs is possible. Mardu requires detecting all function call transfers (call/ret) and instrumenting them to use trampolines in order to keep control transfers semantically correct with re-randomization. A potential way to enable this is to apply techniques that can retrieve precise disassembly from a given binary, such as BYTEWEIGHT [7], to identify possible call targets. A more recent innovation, Egalito [75], a binary recompiler, showed that it is possible to raise (stripped) modern Linux binaries into a low level intermediate representation (IR). Their standalone, layout-agnostic IR is precise and allows arbitrary modifications. This approach would allow binary code or legacy binaries to be directly instrumented such that transfers utilize trampolines via binary re-writing. Leveraging re-assemblyable assembly, Retrowrite [20], also offers a binary transformation framework for 64-bit position-independent binaries. This work makes it plausible that Mardu could leverage their underlying binary-rewriting framework to instrument a popular and important class of binaries, as well as notably third-party shared libraries. Either of these recent approaches would enable Mardu to perform security hardening to software distributed as binaries to end-users.

Security of Protection Keys for Userspace. As briefly mentioned in §3, native MPK applications containing wrpkru instructions are not supported on a Mardu system. If there exists a running native MPK application that contains wrpkru instructions on the host system, there does exist an attack scenario that could victimize this native MPK application and break the guarantees and assumptions set by Mardu. To elaborate, if any applications have wrpkru instructions, it possible for a cross-process MPK attack to occur such that all Mardu guarded code (protected under an XoM domain) could be made accessible to the attacker, (i.e., this could done via an attack vector not covered by Mardu, such as data/argument corruption) leveraging the secondary process containing wrpkru instructions, and effectively disabling Mardu.

To remedy this current limitation, Mardu could be extended to include and use HODOR [32] or ERIM [66] style approaches. Instrumenting hardware watchpoints to vet wrpkru instruction execution at runtime, or perform binary rewriting to generate functionally equivalent assembly where unintended wrpkru instructions occur in the code region, respectively, would then allow Mardu to support and properly protect applications containing native wrpkru instructions.

Full-function reuse attacks. Throughout our analysis, we show that existing re-randomization techniques that use a function trampoline or indirection table [12, 74], i.e., use immutable (indirect) code pointer across re-randomization, cannot prevent full-function reuse attacks. This also affects Mardu; although limited to functions exposed in the trampoline, Mardu cannot defend against an attacker re-using such exposed immutable code pointers as gadgets by leaking code pointers and believe that this is a limitation of using immutable code pointers.
That being said, a possible workaround could be to utilize a monitoring mechanism limited to tracking function pointer assignment. While this approach would be cumbersome, it will have a much smaller overhead because of its smaller scope leading to being more secure while producing less overhead than Shuffer [74].

Another possible solution to prevent these attacks could be pairing Mardu together with control-flow-integrity (CFI) [2, 13, 25, 30, 31, 46, 48, 49, 52, 55, 64, 67, 69, 76, 77], code-pointer integrity/separation (CPI/CPS) [44], or other hardware-assisted solutions such as Intel’s Control-flow Enforcement Technology (CET) [36] and ARM’s Pointer Authentication Code (PAC) [56]. Mardu’s defense is orthogonal to forward-edge protection like CFI. We say this because we hope that a technique (whether it is CFI-based or not) is made such that precise and efficient forward-edge security can be guaranteed; so applying both defenses can complement each other to provide better security. Mardu already provides precise backward-edge CFI via shadow stack, so forward-edge CFI can also be leveraged to further reduce available code-reuse targets.

Note that completely eliminating full-function code reuse and data-oriented programming [35] with low performance overhead and system-wide scalability currently remains an open problem.

8 CONCLUSION
While current defense techniques are capable of defending against current ROP attacks, most designs inherently trade-off well-rounded performance and scalability for their security guarantees. Hence, we introduce Mardu, a novel on-demand system-wide re-randomization technique to combat a majority of code-reuse attacks. Our evaluation verifies Mardu’s security guarantees against known ROP attacks and adequately quantifies its high entropy. Mardu’s performance overhead on SPEC CPU2006 and multi-process NGINX averages 5.5% and 4.4%, respectively, showing that scalability can be achieved with reasonable performance. By being able to re-randomize on-demand, Mardu eliminates both costly runtime overhead and integral threshold components associated with current continuous re-randomization techniques. Mardu is the first code-reuse defense capable of code-sharing with re-randomization to enable practical security that scales system-wide.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insightful comments. This work is supported in part by US Office of Naval Research under grants N00014-18-1-2022.

REFERENCES

Renton, WA.

