
Securely Sharing Randomized Code that Flies

CHRISTOPHER JELESNIANSKI, Virginia Tech,
JINWOO YOM, Virginia Tech,
CHANGWOO MIN, Virginia Tech,
YEONGJIN JANG, Oregon State University,

Address Space Layout Randomization (ASLR) was a great role model being a light-weight defense technique that could prevent
early return-oriented programming (ROP) attacks. Simple yet efective, ASLR was quickly widely-adopted. Conversely, today
only a trickle of defense techniques are being integrated or adopted mainstream. As code reuse attacks have evolved in
complexity, defenses have strived to keep up. However, to do so, many have had to take unfavorable tradeofs like using
background threads or protecting only a subset of sensitive code. In reality, these tradeofs were unavoidable steps necessary
to improve the strength of the state-of-the-art. In this paper, we present Mardu, an on-demand system-wide runtime re-
randomization technique capable of scalable protection of application as well as shared library code most defenses have
forgone. We achieve code sharing with diversiication by implementing reactive and scalable, rather than continuous or
one-time diversiication. Enabling code sharing further removes redundant computation like tracking, patching, along with
memory overheads required by prior randomization techniques. In its baseline state, the code transformations needed for
Mardu security hardening incur a reasonable performance overhead of 5.5% on SPEC and minimal degradation of 4.4% in
NGINX, demonstrating its applicability to both compute-intensive and scalable real-world applications. Even when under
attack, Mardu only adds from less than 1% up to 15% depending on application size and complexity.

CCS Concepts: · Security and privacy→ Software security engineering; Systems security;

Additional Key Words and Phrases: Code Randomization, Return-Oriented Programming, Code Reuse, Code Sharing

1 INTRODUCTION

Code reuse attacks have grown in depth and complexity to circumvent early defense techniques like Address
Space Layout Randomization (ASLR) [63]. Examples like return-oriented programing (ROP) and ret-into-libc [58],
utilize a victim’s code against itself. ROP leverages innocent code snippets, i.e., gadgets, to construct malicious
payloads. Reaching this essential gadget commodity versus defending it from being exploited has made an arms
race between attackers and defenders. Both coarse- and ine-grained ASLR, while light-weight, are vulnerable
to attack. Whether an entire code region or basic block layout is randomized in memory, a single memory
disclosure can result in exposing the entire code layout, regardless [59]. Execute-only memory (XoM) was
introduced to prevent direct memory disclosures, by enabling memory regions to be marked with execute-only
permissions [16, 18]. However, code inference attacks, a code reuse attack variant that works by indirectly
observing and deducing information about the code layout circumvented these limitations [9]. Various attack
angles have revealed that one-time randomization is simply not suicient, and that stronger adversaries remain
to be dealt with eiciently and securely [8, 47].
This fostered the next generation of defenses, such as Shuler [74] and CodeArmor [12], which introduced

continuous runtime re-randomization to strengthen security guarantees. However, these techniques are not

Authors’ addresses: Christopher Jelesnianski , Virginia Tech,, , kjski@vt.edu; Jinwoo Yom , Virginia Tech,, , jinwoo7@vt.edu; Changwoo
Min , Virginia Tech,, , changwoo@vt.edu; Yeongjin Jang , Oregon State University,, , yeongjin.jang@oregonstate.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).
2576-5337/2022/3-ART
https://doi.org/10.1145/3474558

Digit. Threat. Res. Pract.

https://doi.org/10.1145/3474558

2 • C. Jelesnianski et al.

designed for a system’s scalability in mind. Despite being performant, non-intrusive, and easily deployable, they
rely on background threads to run re-randomization or approximated use of timing thresholds to proactively
secure vulnerable code. Speciically, these mechanisms consume valuable system resources even when not under
attack (e.g., consuming CPU time per each threshold for re-randomization), leaving less compute power for
the task at hand. Additionally, no continuous re-randomization techniques currently support code sharing, and
thereby, use much more physical memory by countering the operating systems memory deduplication technique
of using a page cache [6]. Under these defenses, the resource budget required for running an application is
much higher than is traditionally expected, making active randomization techniques not scalable for general
multi-programming computing.
Control Flow Integrity (CFI) is another protection technique that guards againt an attacker attempting to

subvert a program’s control low. CFI in general is already widely deployed on Windows, Android [65], and iOS
as well as having support in compilers like LLVM [62] and gcc [64]. CFI enforces the integrity of a program’s
control low based of a constructed control low graph (CFG) as well as derived equivalence classes for each
forward-edge. However, building a fully precise CFG for enforcing CFI is challenging and is still considered an
open problem. Going in an orthogonal direction to CFI could avoid these inherent challenges.
In this paper, we introduce Mardu to refocus the defense technique design, showing that it is possible

to embrace core fundamentals of both performance and scalability, while ensuring comprehensive security
guarantees.

Mardu builds on the insight that thresholds, like time intervals [12, 74] or the amount of leaked data [70], are
a security loophole and a performance shackle in re-randomization; Mardu does not rely on a threshold at all in
its design. Instead Mardu only activates re-randomization when necessary. Mardu takes advantage of an event
trigger design and acts on permissions violations of Intel Memory Protection Keys (MPK) [37]. Using Intel MPK,
Mardu provides eicient XoM protection against both variations of remote and local JIT-ROP. With XoM in
place, Mardu leverages Readactor’s [16, 17] immutable trampoline idea; such that, while trampolines are not
re-randomized, they are protected from read access and efectively decouple function entry points from function
bodies, making it impossible for an attacker to infer and obtain ROP gadgets.
It is crucial to note that few re-randomization techniques factor in the overall scalability of their approach.

Support for code sharing is very challenging especially for randomization-based techniques. This is because
applying re-randomization per process counters the principles of memory deduplication. Additionally, the
prevalence of multi-core has excused the reliance on per-process background threads dedicated to performing
compute-extensive re-randomization processes; even if recent defenses have gained some ground in the arms
race, most still lack efective comprehensiveness in security for the system resource demands they require in
return (both CPU and memory).Mardu balances performance and scalability by not requiring expensive code
pointer tracking and patching. Furthermore, Mardu does not incur a signiicant overhead from continuous
re-randomization triggered by conservative time intervals or benign I/O system calls as in Shuler [74] and
ReRanz [70], respectively. Finally,Mardu is designed to both support code sharing and not require the use of
any additional system resources (e.g., background threads as used in numerous works [8, 12, 23, 70, 74]). To
summarize, we make the following contributions:

• ROP attack & defense analysis. Our background in ğ2, describes four prevalent ROP attacks that challenge
current works, including JIT-ROP, code-inference, low-proile, and code pointer ofsetting attacks. With this,
we classify and exhibit current state-of-the-art defenses standings on three fronts: security, performance, and
scalability. Our indings show most defenses are not as secure or as practical as expected against current ROP
attack variants.
• Mardu defense framework.We present the design ofMardu in ğ4, a comprehensive ROP defense technique
capable of addressing most popular and known ROP attacks, excluding only full-function code reuse attacks.

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 3

Table 1. Classifications of ASLR-based code-reuse defenses. Gray highlighting emphasizes the atack (A1-A4) that largely

invalidated each type of defense. indicates the atack is blocked by the defense (atack-resistant). × indicates the defense is

vulnerable to that atack. indicates the atack is not blocked but is still mitigated by the defense (atack-resilient).✓ indicates

the defense meets performance/scalability requirements. × indicates the defense is unable to meet performance/scalability

requirements. N/A in column A3 indicates that the atack is not applicable to the defense due to lack of re-randomization;

N/T in column Performance indicates that either SPEC CPU2006 or perlbench is not tested. Specifically in column A1,

indicates that the defense cannot prevent the JIT-ROP atack within the application boundary that does not use system

calls; in column A4, × indicates that an atack may reuse both ROP gadgets and entire functions while indicates that an

atack can only reuse entire functions. † Note that in TASR, the baseline is a binary compiled with -Og, necessary to correctly

track code pointers. Previous work [70, 74] reported performance overhead of TASR using regular optimization (-O2) binary

is ≈30-50%. Mardu provides strong security guarantees with competitive performance overhead and good system-wide

scalability compared to existing re-randomization approaches.

Types Defenses
Security Performance Scalability

Gran. A1 A2 A3 A4 Perf. Avg. Worst Code Sharing No Addi. Process

Load-time ASLR
Fine-ASLR [14, 33, 34, 39, 43, 51, 72] Fine × × N/A × ✓ 0.4% 6.4% × ✓

Oxymoron [6] Coarse × × N/A × ✓ 2.7% 11% ✓ ✓

Pagerando [15] Coarse × × N/A × ✓ 1.09% 6.5% ✓ ✓

Isomeron [19] Fine N/A × 19% 42% × ×

Load-time+XoM
Readactor/Readactor++ [16, 18] Fine × N/A ✓ 8.4% 25% × ✓

LR 2 [10] Fine × N/A ✓ 6.6% 18% × ✓

kRˆ X [54] Fine × N/A ✓ 2.32% 12.1% × ✓

Re-randomization

RuntimeASLR [47] Coarse × N/A × × N/T N/T ✓ ✓

TASR [8] Coarse × × × 2.1%† 10.1%† × ×

ReRanz [70] Fine × ✓ 5.3% 14.4% × ×

Shuler [74] Fine × × 14.9% 40% × ×

CodeArmor [12] Coarse × × × 3.2% 55% × ×

Our Approach Mardu Fine ✓ 5.5% 18.3% ✓ ✓

• Scalability and shared code support. To the best of our knowledge, Mardu is the irst framework capable
of re-randomizing shared code throughout runtime.Mardu creates its own calling convention to both leverage
a shadow stack and minimize overhead of pointer tracking. This calling convention also enables shared code
(e.g., libraries) to be re-randomized by any host process and maintain security integrity for the rest of the entire
system.

• Evaluation & prototype. We have built a prototype of Mardu and evaluated it in ğ6 with both compute-
intensive benchmarks and real-world applications.

2 CODE LAYOUT (RE-)RANDOMIZATION

In this section, we present a background on the code re-use attack and defense arms race. In summary, Table 1
illustrates the characteristics of each defense technique by their randomization category, attack resilience, and
performance and scalability factors, and we describe these in detail in the following.

2.1 Atacks against Load-time Randomization

Load-time Randomization without XoM. Code layout randomization techniques such as coarse-grained
ASLR [63] and ine-grained ASLR [6, 14, 19, 33, 34, 39, 43, 51, 72] which depend on the granularity of layout
randomization, fall into this category of code layout randomization. These techniques randomize the code layout
only once, usually when loaded into memory, and its layout never changes thereafter during the lifetime of the
program.

Digit. Threat. Res. Pract.

4 • C. Jelesnianski et al.

A1: Just-in-time ROP (JIT-ROP). An attacker with an arbitrary memory read capability may launch JIT-
ROP [59] by interactively performing memory reads to disclose one code pointer. This disclosure can be used
to then leap frog and further disclose other addresses to ultimately learn the entire code contents in memory.
Any load-time code randomization technique that does not protect code from read access including ine-grained
ASLR techniques is susceptible to this attack.

Load-time Randomization with XoM. In response to A1 (JIT-ROP), several works protect code from read
access via destructive read memory [61, 73] or execute-only memory (XoM) [5, 10, 12, 16, 18, 26, 54, 61, 73]. By
destroying, purposely corrupting code read by attackers, or fundamentally removing read permissions from the
code area, respectively, these techniques prevent attackers from gaining knowledge about the code contents,
nullifying A1.

A2: Blind ROP (BROP) and code inference atacks. Even with XoM, load-time randomizations still are
susceptible to BROP [9] or other inference attacks [53, 60]. BROP infers code contents via observing diferences
in execution behaviors such as timing or program output while other attacks [53, 60] defeat destructive code read
defenses [61, 73] by weaponizing code contents from only a small fraction of a code read. Therefore, maintaining
a ixed layout over crash-probing or read access to code allows inferring code contents indirectly, letting attackers
still learn the code layout.

2.2 Defeating A1/A2 via Continuous Re-randomization

Continuous re-randomization techniques [8, 12, 23, 27, 47, 70, 74] aim to defeat A1 and A2 by continuously
shuling code (and data) layouts at runtime to make information leaks or code probing done before shuling
useless. To illustrate the internals of re-randomization techniques, we describe the core design elements of
re-randomization by categorizing them into two types: 1) Re-randomization triggering condition and 2) Code

pointer semantics.

By re-randomization triggering condition:

• Timing: Techniques [12, 74] shule the layout periodically by setting a timing window. For example, Shuf-
ler [74] triggers re-randomization every 50 msec (< network latency) to counter remote attackers, and
CodeArmor [12] can set re-randomization period as low as 55 µsec.
• System-call history: Techniques [8, 47, 70] shule the layout based on the history of the program’s previous
system call invocations, e.g., invoking fork() (vulnerable to BROP) [47] or when write() (leak) is followed by
read() (exploit) [8, 70].

By code pointer semantics:

• Code address as code pointer: Techniques (ASR3 [27] and TASR [8]) use actual code address as code pointers.
In this case, leaking a code pointer lets the attacker have knowledge about an actual code address. Therefore,
this design requires tracking of all code pointers (or all pointers) at runtime, which is computationally expensive,
to update values after randomizing the code layout.
• Function trampoline address as code pointer: These techniques store an indirect index, for instance, a
function table index (Shuler [74]) or the address of a function trampoline (ReRanz [70]), as code pointers to
avoid expensive pointer tracking. After re-randomization, the techniques only need to update the function table
while all code pointers remain immutable. With this design, leaking a code pointer will tell the attacker about
the function index in the table or trampoline but not about the code layout; however, because the function
index is immutable across re-randomization, attackers may re-use leaked function indices.
• An ofset to the code address as code pointer: This design also avoids pointer tracking by having an
immutable ofset from the random version address for referring to a function, as in CodeArmor [12]. The
re-randomization is eicient because it only requires randomizing the version base address, and does not
require any update of pointers. With this design, leaking a code pointer will only tell the attacker about the

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 5

ofset to select a speciic function; however, the ofset is immutable across re-randomization, so attackers may
re-use leaked function ofsets.

2.3 Atacks against Continuous Re-randomization

Based on our analysis of continuous re-randomization techniques, we deine two attacks (A3 and A4) against
them.

A3: Low-proile JIT-ROP. This attack class does not trigger re-randomization, either by completing the attack
within a defense’s pre-deined randomization time interval or without involving any I/O system call invocations.
Existing defenses utilize one of timing [12, 23, 27, 74], amount of transmitted data by output system calls [70], or
I/O system call boundary [8] as a trigger for layout re-randomization. Therefore attacks within the application
boundary, such as code-reuse attacks in Javascript engines of web browsers where both information-leak followed
by control-low hijacking attack may complete faster than the re-randomization timing threshold (e.g., < 50 msec)
or not interact with any I/O system calls (e.g., leaking pointers via type-confusion vulnerabilities). This bypasses
these triggering conditions, leaving the code layout unchanged within the given interval and vulnerable to
JIT-ROP.

A4: Code pointer ofseting. Even with re-randomization, techniques might be susceptible to a code pointer
ofsetting attack if code pointers are not protected from having arithmetic operations applied by attackers [8, 12].
An attacker may trigger a vulnerability to apply arithmetic operations to an existing code pointer. Particularly, in
techniques that directly use a code address [8] or a code ofset [12], the target could be even a ROP gadget if
the attacker knows the gadgets ofset beforehand. Ward et al. [71] has demonstrated that this attack is possible
against TASR. A4 shows that maintaining a ixed code layout across re-randomizations and not protecting code
pointers lets attackers perform arithmetic operations over pointers, allowing access to other ROP gadgets.

3 THREAT MODEL AND ASSUMPTIONS

Mardu’s threat model follows that of similar re-randomization works [8, 12, 74]. We assume attackers can
perform arbitrary read/write by exploiting software vulnerabilities in the victim program. We also assume all
attack attempts run in a local machine such that attacks may be performed any number of times within a short
time period (e.g., within a millisecond).
Our trusted computing base includes the OS kernel, the loading/linking process such that attackers cannot

intervene to perform any attack before a program starts, and that system userspace does not have any memory
region that is both writable and executable or both readable and executable (e.g., DEP (W⊕X) and XoM (R⊕X)
are enabled). We assume all hardware is trusted and attackers do not have physical access. This includes trusting
Intel Memory Protection Keys (MPK) [37], a mechanism that provides XoM.

Mardu does not support native MPK applications that directly use wrpkru instructions. We further analyze
the security of leveraging protection keys for userspace in ğ7. Finally, hardware attacks (e.g., side-channel attacks,
Spectre [40], Meltdown [45]) are out of scope.

4 MARDU DESIGN

We begin with the design overview ofMardu in ğ4.1 and then go into further detail of theMardu compiler in
ğ4.2 and kernel in ğ4.3.

4.1 Overview

This section presents the overview ofMardu, along with its design goals, challenges, and outlines its architecture.

Digit. Threat. Res. Pract.

6 • C. Jelesnianski et al.

4.1.1 Goals. Our goal in designing Mardu is to shore up the current state-of-the-art to enable a practical code
randomization. More speciically, our design goals are as follows:

Scalability. Most proposed exploit mitigation mechanisms overlook the impact of required additional system
resources, such as memory or CPU usage, which we consider a scalability factor. This is crucial for applying
a defense system-wide, and is even more critical when deploying the defense in pay-as-you-go pricing on the
Cloud. Oxymoron [6] and PageRando [15] are the only defenses, to our knowledge, that allow code sharing of
randomized code. No other re-randomization defenses support code sharing thus they require signiicantly more
memory. Additionally, most re-randomization defenses [12, 70, 74] require per-process background threads, which
not only cause additional CPU usage but also contention with the application process. As a result, approaches
requiring per-process background threads show signiicant performance overhead as the number of processes
increases. Therefore, to applyMardu system-wide, we designMardu to not require signiicant additional system
resources, for instance, additional processes/threads or signiicant additional memory.

Performance. Many prior approaches [12, 16, 18, 74] demonstrate decent runtime performance on average
(<10%, e.g., <3.2% in CodeArmor); however, they also show corner cases that are remarkably slow (i.e., >55%,
seeWorst column in Table 1). We designMardu to be competitive with prior code randomization approaches
in terms of performance overhead in order to show the security beneitsMardu provides are worth the minor
tradeof. In particular, we aim to ensure that Mardu’s performance is acceptable even in its worst case outliers
across a variety of application types.

Security. No prior solutions provide a comprehensive defense against existing attacks (see ğ2). Systems with only
load-time ASLR are susceptible to code leaks (A1) and code inference (A2). Systems applying re-randomization
are still susceptible to low-proile attacks (A3) and code pointer ofsetting attacks (A4). Mardu aims to either
defeat or signiicantly limit the capability of attackers to launch code-reuse attacks spanning from A1 to A4 to
provide a best-efort security against known existing attacks.

4.1.2 Challenges. Naïvely combining the best existing defense techniques is simply not possible due to conlicts
in their requirements. These are the challenges Mardu addresses.

Tradeofs in security, performance, and scalability. An example of the tradeof between security and
performance is having ine-grain ASLR with re-randomization. Although such an approach can defeat code
pointer ofsetting (A4), systems cannot apply such protection because re-randomization must inish quickly to
meet performance goals to also defeat low-proile attacks (A3). An example of the tradeof between scalability and
performance is having a dedicated process/thread for running the defense and performing the re-randomization.
Usage of a background thread results in a drawback in scalability by occupying a user’s CPU core, which can
no longer be used for useful user computation. This trade of is exaggerated even more by systems that require
one-to-one matching of a background randomization thread per worker thread. Therefore, a good design must
ind a breakthrough to meet all of aforementioned goals.

Conlict in code-diversiication vs. code-sharing. Layout re-randomization requires diversiication of code
layout per-process, and this afects the availability of code-sharing. The status quo is that code sharing cannot be
applied to any existing re-randomization approaches, making defenses unable to scale to protect many-process
applications. Although Oxymoron [6] enables both diversiication and sharing of code, it does not consider
re-randomization, nor use a suicient randomization granularity (page-level).

4.1.3 Architecture. We design Mardu to gain insight on how to properly balance and integrate opposing goals
of security, scalability, and performance together. We introduce our approach for satisfying each aspect below:

Scalability: Sharing randomized code. Mardu manages the cache of randomized code in the kernel, making
it capable of being mapped to multiple userspace processes, not readable from userspace, and not requiring any
additional memory.

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 7

Fig. 1. Overview of Mardu

Scalability: System-wide re-randomization. Since code is shared between processes in Mardu, per-process
randomization, which is CPU intensive, is not required; rather a single process randomization is suicient for the
entire system. For example, if a worker process of NGINX server crashes, it re-randomizes upon exit all associated
mapped executables (e.g., libc.so of all processes, and all other NGINX workers).

Scalability: On-demand re-randomization. Mardu re-randomizes code only when suspicious activity is
detected. This design is advantageous becauseMardu does not rely on per-process background threads nor a
re-randomization interval unlike prior re-randomization approaches. Particularly,Mardu re-randomization is
performed in the context of a crashing process, thereby not afecting the performance of other running processes.

Performance: Immutable code pointers. The described design decisions for scalability also help reduce
performance overhead. Mardu neither tracks nor encrypts code pointers so code pointers are not mutated upon
re-randomization. While this design choice minimizes performance overhead, other security features (e.g., XoM,
trampoline, and shadow stack) inMardu ensure a comprehensive ROP defense.

Security: Detecting suspicious activities. Mardu considers any process crash or code probing attempt as a
suspicious activity.Mardu’s use of XoMmakes any code probing attempt trigger a process crash and consequently
system-wide re-randomization. Therefore, Mardu counters direct memory disclosure attacks as well as code
inference attacks requiring initial code probing [53, 60]. We use Intel MPK [37] to implement XoM forMardu;
leveraging MPK makes hiding, protecting, and legitimately using code much more eicient and simple with
page-permissions compared to virtualization-based designs that require nested address translation during runtime.

Security: Preventing code & code pointer leakage. In addition to system-wide re-randomization, Mardu

minimizes the leakage of code and code pointers. Besides XoM, we use three techniques. First,Mardu applications
always go through a trampoline region to enter into or return from a function. Thus, only trampoline addresses
are stored in memory (e.g., stack and heap) while non-trampoline code pointers remain hidden. Mardu does not
randomize the trampoline region so that tracking and patching are not needed upon re-randomization. Second,
Mardu performs ine-grained function-level randomization within an executable (e.g., libc.so) to completely
disconnect any correlation between trampoline addresses and code addresses. This provides high entropy (i.e.,
roughly n! where n is the number of functions). Also, unlike re-randomization approaches that rely on shifting
code base addresses [8, 12, 47], Mardu is not susceptible to code pointer ofsetting attacks (A4). Finally, Mardu

stores return addressesśprecisely, trampoline addresses for returnśin a shadow stack. This design makes stack
pivoting practically infeasible.

Digit. Threat. Res. Pract.

8 • C. Jelesnianski et al.

Design overview. As shown in Figure 1, Mardu is composed of compiler and kernel components. The Mardu

compiler enables trampolines and a shadow stack to be used. TheMardu compiler generates PC-relative code so
that randomized code can be shared by multiple processes. Also, the compiler generates and attaches additional
metadata to binaries for eicient patching.
The Mardu kernel is responsible for choreographing the runtime when a Mardu enabled executable is

launched. The kernel extracts and loadsMardu metadata into a cache to be shared by multiple processes. This
metadata is used for irst load-time randomization as well as re-randomization. The randomized code is cached
and shared by multiple processes; while allowing sharing, each process will get a diferent random virtual
address space for the shared code. The Mardu kernel prevents read operations of the code region, including the
trampoline region, using XoM such that trampoline addresses do not leak information about non-trampoline
code. Whenever a process crashes (e.g., XoM violation), theMardu kernel re-randomizes all associated shared
code such that all relevant processes are re-randomized to thwart an attacker’s knowledge immediately.

4.2 Mardu Compiler

TheMardu compiler generates a binary able to 1) hide its code pointers, 2) share its randomized code among
processes, and 3) run under XoM. Mardu uses its own calling convention using a trampoline region and shadow
stack.

4.2.1 Code Pointer Hiding.

Trampoline. Mardu hides code pointers without paying for costly runtime code pointer tracking. The key idea

for enabling this is to split a binary into two regions in process memory: trampoline and code regions (as shown
in Figure 2 and Figure 3). A trampoline is an intermediary call site that moves control low securely to/from
a function body, protecting the XoM hidden code region. There are two kinds of trampolines: call and return
trampolines. A call trampoline is responsible for forwarding control low from an instrumented call to the code
region function entry, while a return trampoline is responsible for returning control low semantically to the caller.
Each function has one call trampoline to its function entry, and each call site has one return trampoline returning
to the following instruction of the caller. Since trampolines are stationary,Mardu does not need to track code
pointers upon re-randomization because only stationary call trampoline addresses are exposed to memory.

Shadow stack. Unlike the x86 calling convention using call/ret to store return addresses on the stack,Mardu

instead stores all return addresses in a shadow stack and leaves data destined for the regular stack untouched.
Efectively, this protects all backward-edges. AMardu call pushes a return trampoline address onto the shadow
stack and jumps to a call trampoline; an instrumented ret directly jumps to the return trampoline address at
the current top of the shadow stack.Mardu assumes a 64-bit address space and ability to leverage a segment
register (e.g., %gs); the base address of the Mardu shadow stack is randomized by ASLR and is hidden in %gs,
which cannot be modiied in userspace and will never be stored in memory.

Running example. Figure 2 is an example of executing a Mardu-compiled function foo(), which calls a
function bar() and then returns. Every function call and return goes through trampoline code which stores the
return address to a shadow stack. The body of foo() is entered via its call trampoline 1 . Before foo() calls bar(),
the return trampoline address is stored onto the shadow stack. Control low then jumps to bar()’s trampoline 2 ,
which will jump to the function body of bar() 3 . bar() returns to the address in the top of the shadow stack,
which is the return trampoline address 4 . Finally, the return trampoline returns to the instruction following the
call in foo() 5 .

4.2.2 Enabling Code Sharing among Processes.

PC-relative addressing. The Mardu compiler generates PC-relative (i.e., position-independent) code so it

can be shared amongst processes loading the same code in diferent virtual addresses. The key challenge here

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 9

Fig. 2. Illustrative example executing aMardu-compiled function foo(), which calls a function bar() and then returns.

is how to incorporate PC-relative addressing with randomization. Mardu randomly places code (at function
granularity) while trampoline regions remain stationary. This means any code using PC-relative addressing must
be correspondingly patched once its randomized location is decided. In Figure 2, all jump targets between the
trampoline and code, denoted in yellow rectangles, are PC-relative and must be adjusted. All data addressing
instructions (e.g., accessing global data, GOT, etc.) must also be adjusted.

Fixup information for patching. With this policy, it is necessary to keep track of these instructions to patch
them properly during runtime. Similar to Compiler-assisted Code Randomization (CCR) [42], Mardu makes its
runtime patching process simple and eicient by leveraging the LLVM compiler to collect and generate metadata,
like ixups and relocations, into the binary describing exact locations for patching and their ile-relative ofset.
Reading this information from the newly generated section in the executable, this ixup information makes
patching as simple as just adjusting PC-relative ofsets for given locations (see Figure 3). However, CCR only uses
that information once, relying on a binary rewriter for a single static user-side binary executable randomization at
function and basic-block granularity. Contrary to CCR,Mardu leverages the metadata added to allow processes to
behave as runtime code rewriters, and re-randomize on-demand. The overhead of runtime patching is negligible
because Mardu avoids łstopping the worldž when patching the code to maintain internal consistency compared
to other approaches, putting the burden on the crashed process. We elaborate on the patching process in ğ4.3.2.

Supporting a shared library. A call to a shared library is treated the same as a normal function call to preserve
Mardu’s code pointer hiding property; that is,Mardu refers to the call trampoline for the shared library call
via procedure linkage table (PLT) or global ofset table (GOT) whose address is resolved by the dynamic linker
as usual. While Mardu does not speciically protect GOT, we assume that the GOT is already protected. For
example, Fedora systems that support MPK have been hardened to enforce lazy binding will use a read-only
GOT [22].

Digit. Threat. Res. Pract.

10 • C. Jelesnianski et al.

Fig. 3. The memory layout of two Mardu processes: websrv (top let) and dbsrv (top right). The randomized code in kernel

(0xffffffff811f7000) is shared by multiple processes, which is mapped to its own virtual base address (0x7fa67841a000 for

websrv and 0x7f2bedffc000 for dbsrv).

4.3 Mardu Kernel

The Mardu kernel randomizes code at load-time and runtime. It maps already-randomized code, if it exists, to
the address space of a newly fork-ed process. When an application crashes,Mardu re-randomizes all mapped
binaries associated with the crashing process and reclaims the previous randomized code from the cache after all
processes are moved to a newly re-randomized code. Mardu prevents direct reading of randomized code from
userspace using XoM. Mardu is also responsible for initializing a shadow stack for each task1.

4.3.1 Process Memory Layout. Figure 3 illustrates the memory layout of two Mardu processes. The Mardu

compiler generates a PC-relative binary with trampoline code and ixup information 1 . When a binary is loaded
to be mapped to a process with executable permissions, theMardu kernel irst performs a one time extraction
of all Mardu metadata in the binary and associates it on a per-ile basis. Extracting metadata gives Mardu

the information it needs to perform (re-)randomization 2 . Note that load-time randomization and run-time
re-randomization follow the exact same procedure. Mardu irst generates a random ofset to set apart the code
and trampoline regions and then places functions in a random order within the code region. Once functions are
placed, Mardu then uses the cached Mardu metadata to perform patching of ofsets within both the trampoline
and code regions to preserve program semantics. With the randomized code now semantically correct, it can be
cached and mapped to multiple applications 3 .
Whenever a new task is created (clone), the Mardu kernel allocates a new shadow stack and copies the

parent’s shadow stack to its child; it is placed in the virtual code region created by the Mardu kernel. The
base address of the Mardu shadow stack is randomized by ASLR and is hidden in segment register %gs. Any
crash, such as brute-force guessing of base addresses, will trigger re-randomization, which invalidates all prior
information gained, if any. To minimize the overhead incured from using a shadow stack, Mardu implements its
own compact shadow stack without comparisons [11]. For our shadow stack implementation, we reserve one
register, %rbp, to use exclusively as a stack top index of the shadow stack in order to avoid costly memory access.

1In this paper, the term task denotes both process and thread as the convention in Linux kernel.

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 11

4.3.2 Fine-Grain Code Randomization.

Allocating a virtual code region. For each randomized binary, the Mardu kernel allocates a 2 GB virtual

address region2 (Figure 3 2), which will be mapped to userspace virtual address space with coarse-grained ASLR
(Figure 3 3)3. The Mardu kernel positions the trampoline code at the end of the virtual address region and
returns the start address of the trampoline via mmap. The trampoline address remains static throughout program
execution even after re-randomization.

Randomizing the code within the virtual region. To achieve a high entropy, the Mardu kernel uses ine-
grained randomization within the allocated virtual address region. Once the trampoline is positioned, theMardu

kernel randomly places non-trampoline code within the virtual address region;Mardu decides a random ofset

between the code and trampoline regions. Once the code region is decided, Mardu permutes the function order
within the code region to further increase entropy. As a result, trampoline addresses do not leak information on
non-trampoline code and an adversary cannot infer any actual codes’ location from the system information (e.g.,
/proc/<pid>/maps) as they will get the same mapping information for the entire 2 GB region.

Patching the randomized code. After permuting functions, theMardu kernel patches PC-relative instructions
accessing code or data according to the randomization pattern. This patching process is trivial at runtime; the
Mardu compiler generates ixup location information and the Mardu kernel re-calculates and patches PC-
relative ofsets of instructions according to the randomized function location. Note that patching includes control
low transfer between trampoline and non-trampoline code, global data access (i.e., .data, .bss), and function
calls to other shared libraries (i.e., PLT/GOT).

4.3.3 Randomized Code Cache. The Mardu kernel manages a cache of randomized code. When a userspace
process tries to map a ile with executable permissions, theMardu kernel irst looks up if there already exists
a randomized code of the ile. If cache hits, theMardu kernel maps the randomized code region to the virtual
address of the requested process. Upon cache miss, it performs load-time randomization as described earlier.
The Mardu kernel tracks how many times the randomized code region is mapped to userspace. If the reference
counter is zero or system memory pressure is high, the Mardu kernel evicts the randomized code. Thus, in
normal cases without re-randomization, Mardu randomizes a binary ile only once (load-time). In Mardu, the
randomized code cache is associated with the inode cache. Consequently, when the inode is evicted from the
cache under severe memory pressure, its associated randomized code is also evicted.

4.3.4 Execute-Only Memory (XoM). We designed XoM based on Intel MPK [37]4. With MPK, each page is assigned
to one of 16 domains under a protection key, which is encoded in a page table entry. Read and write permissions
of each domain can be independently controlled through an MPK register. When randomized code is mapped to
userspace, the Mardu kernel conigures the XoM domain to be non-accessible (i.e., neither readable nor writable
in userspace), and assigns code memory pages to the created XoM domain, enforcing execute-only permissions.
If an adversary tries to read XoM-protected code memory, re-randomization is triggered via the raised XoM
violation. Unlike EPT-based XoM designs [61] that require system resources to enable virtualization as well as
have inherent overhead from nested address translation, our MPK-based design does not impose such runtime
overhead.

4.3.5 On-Demand Re-randomization.

Triggering re-randomization. When a process crashes, Mardu triggers re-randomization of all binaries

2 We note that, for the unused region, we map all those virtual addresses to a single abort page that generates a crash when accessed to not to
waste real physical memory and also detect potential attack attempts.
3We choose 2 GB because in x86-64 architecture PC-relative addressing can refer to a maximum of ±2 GB range from %rip.
4As of this writing, Intel Xeon Scalable Processors [38] and Amazon EC2 C5 instance [3] support MPK. Other than x86, ARM AArch64
architecture also supports execute-only memory [4].

Digit. Threat. Res. Pract.

12 • C. Jelesnianski et al.

Fig. 4. Re-randomization procedure inMardu. Once a new re-randomized code is populated 1 , theMardu kernel maps new

code and trampoline in order 2 , 3 . This makes threads crossing the new trampoline migrate to the newly re-randomized

code. Ater it is guaranteed that all threads are migrated to the new code,Mardu reclaims the old code 4 . Unlike previous

continuous per-process re-randomization approaches, our re-randomization is time-bound, eficient, and system-wide.

mapped to the crashing process. Since Mardu re-randomization thwarts attacker’s knowledge (i.e., each attempt
is an independent trial), an adversary must succeed in her irst try without crashing, which is practically infeasible.

Re-randomizing code. Upon re-randomization, the Mardu kernel irst populates another copy of the code
(e.g., libc.so) in the code cache and freshly randomizes it (Figure 4 1).Mardu leaves trampoline code at the
same location to avoid mutating code pointers but it does randomly place non-trampoline code (via new random
ofset) such that the new version does not overlap with the old one. Then, it permutes functions in the code. Thus,
re-randomized code is completely diferent from the previous one without changing trampoline addresses.

Live thread migration without stopping the world. Re-randomized code prepared in the previous step is
not visible to userspace processes because it is not yet mapped to userspace. To make it visible,Mardu irst maps
the new non-trampoline code to the application’s virtual address space, Figure 4 2 . The old trampolines are left
mapped, making new code not reachable. OnceMardu remaps the virtual address range of the trampolines to
the new trampoline code by updating corresponding page table entries 3 , the new trampoline code will transfer
control low to the new non-trampoline code. Hereafter any thread crossing the trampoline migrates to the new
non-trampoline code without stopping the world.

Safely reclaiming the old code. Mardu can safely reclaim the code only after all threads migrate to the new
code 4 . Mardu uses reference counting for each randomized code to check if there is a thread accessing the old
code. After the new trampoline code is mapped 3 ,Mardu sets a reference counter of the old code to the number
of all runnable tasks 5 that map the old code. It is not necessary to wait for the migration of a non-runnable,
sleeping task because it will correctly migrate to the newest randomized code region when it passes through
the return trampoline, which refers to the new layout when it wakes up. The reference counter is decremented
when a runnable task enters into theMardu kernel due to system call or preemption. When calling a system
call, the Mardu kernel will decrement reference counters of all code that needs to be reclaimed. When the task
returns to userspace, it will return to the return trampoline and the return trampoline will transfer to the new
code. When a task is preempted out, it may be in the middle of executing the old non-trampoline code. Thus, the
Mardu kernel not only decrements reference counters but also translates %rip of the task to the corresponding
address in the new code. SinceMardu permutes at function granularity, %rip translation is merely adding an
ofset between the old and new function locations.

5A task in a TASK_RUNNING status in Linux kernel.

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 13

Summary. Our re-randomization scheme has three nice properties: 1) time boundness of re-randomization,
2) almost zero overhead of running process, and 3) system-wide re-randomization. Because Mardu migrates
runnable tasks at system call and scheduling boundaries, it ensures thatMardu re-randomization will always
guarantee the process to use the newly secure version of Mardu-enabled code once awoken or has crossed
the system call boundary. Just as important, processes will never have access to the attacker exposed code ever
again once crossing those boundaries. If another process crashes in the middle of re-randomization, Mardu will
not trigger another re-randomization until the current randomization inishes. However, as soon as the new
randomized code is populated 1 , a new process will map the new code immediately. Therefore, the old code
cannot be observed more than once. TheMardu kernel populates a new randomized code in the context of a
crashing process. All other runnable tasks only additionally perform reference counting or translation of %rip to
the new code. Thus, its runtime overhead for runnable tasks is negligible. To the best of our knowledge, Mardu is

the irst system to perform system-wide re-randomization allowing code sharing.

5 IMPLEMENTATION

We implemented Mardu on the Linux x86-64 platform. The Mardu compiler is implemented using LLVM 6.0.0
and theMardu kernel is implemented based on Linux kernel 4.17.0 modifying 3549 and 4009 lines of code (LOC),
respectively. We used musl libc 1.1.20 [1], a fast, lightweight C standard library for Linux. We chose musl libc
because glibc is not able to be compiled with LLVM/Clang. We manually wrapped all inline assembly functions
present in musl to allow them to be properly identiied and instrumented by theMardu compiler. We modiied
164 LOC in musl libc for the wrappers.

5.1 Mardu Compiler

Trampoline. TheMardu compiler is implemented as backend target-ISA (x86) speciic MachineFunctionPass.
This pass instruments each function body as described in ğ4.2.

Re-randomizable code. The following compiler lags are used by the Mardu compiler: -fPIC enables instruc-
tions to use PC-relative addressing; -fomit-frame-pointer forces the compiler to relinquish use of register %rbp,
as register %rbp is repurposed as the stack top index of a shadow stack inMardu; -mrelax-all forces the compiler
to always emit full 4-byte displacement in the executable, such that theMardu kernel can use the full span of
memory within our declared 2GB virtual address region and maximize entropy when performing patching; lastly,
the Mardu compiler ensures code and data are segregated in diferent pages via using -fno-jump-tables to
prevent false positive XoM violations.

5.2 Mardu Kernel

Random number generation. Mardu uses a cryptographically secure random number generator in Linux
based on hardware instructions (i.e., rdrand) in modern Intel architectures. Alternatively,Mardu can use other
secure random sources such as /dev/random or get_random_bytes().

5.3 Limitation of Our Prototype Implementation

Assembly Code. Mardu does not support inline assembly as in musl; however, this could be resolved with
further engineering. Our prototype uses wrapper functions to make assembly comply with Mardu calling
convention.

Setjmp and exception handling. Mardu uses a shadow stack to store return addresses. Thus, functions such
as setjmp, longjmp, and libunwind that directly manipulate return addresses on stack are not supported by our

Digit. Threat. Res. Pract.

14 • C. Jelesnianski et al.

prototype. Adding support for these functions could be resolved by porting these functions to understand our
shadow stacks semantics, as our shadow stack is a variant of compact, register-based shadow stack [11].

C++ support. Our prototype does not support C++ applications since we do not have a stable standard C++
library that is musl-compatible.

6 EVALUATION

We evaluate Mardu by answering these questions:
• How secure is Mardu, when presented against current known attacks on randomization? (ğ6.1)
• Howmuch performance overhead does the needed instrumentation ofMardu impose, particularly for compute-
intensive benchmarks in a typical runtime without any attacks? (ğ6.2)
• How scalable isMardu in terms of load time, re-randomization time with and without on-going attacks, and
memory savings, paricularly for concurrent processes such as in a real-world network facing server? (ğ6.3)

Applications. We evaluate the performance overhead ofMardu using SPEC CPU2006. This benchmark suite
has realistic compute-intensive applications, ideal to see worst-case performance overhead of Mardu. We tested
all 12 C language benchmarks using input size ref ; we excluded C++ benchmarks as our current prototype does
not support C++. We choose SPEC CPU2006 over SPEC CPU2017 to easily compare Mardu to prior relevant re-
randomization techniques. We test performance and scalability ofMardu on a complex, real-world multi-process
web server with NGINX.

Experimental setup. All programs are compiled with optimization -O2 and run on a 24-core (48-hardware
threads) machine equipped with two Intel Xeon Silver 4116 CPUs (2.10 GHz) and 128 GB DRAM.

6.1 Security Evaluation

We analyze the resiliency of Mardu against existing attacker models with load-time randomization (A1śA2,
ğ6.1.1) and continuous re-randomization. (A3śA4, ğ6.1.2). Then, to illustrate the efectiveness of Mardu for a
wider class of code-reuse attacks beyond ROP, we discuss the threat model of NEWTON [68] withMardu (ğ6.1.3).

6.1.1 Atacks against Load-Time Randomization.

Against JIT-ROP attacks (A1). Mardu asserts permissions for all code areas and trampoline regions as

execute-only (via XoM); thereby, JIT-ROP cannot read code contents directly.

Against code inference attacks (A2). Mardu blocks code inference attacks, including BROP [9], clone-
probing [47], and destructive code read attacks [53, 60] via layout re-randomization triggered by an application
crash or XoM violation. Every re-randomization renders all previously gathered (if any) information regarding
code layout invalid and therefore prevents attackers from accumulating indirect information. Note that attacks
such as Address-Oblivious Code Reuse (AOCR) [57], do not fall into the category of A2. This attack vector’s
process of control hijacking more closely resembles full-function code re-use rather than indirect exposure of
code; AOCR leverages manipulation of data and function pointer corruption and does not require usage of ret
gadgets.

Hiding shadow stack. Attackers with arbitrary read/write capability (A1/A2) may attempt to leak/alter shadow
stack contents if its address is known. Although the location of the shadow stack is hidden behind the %gs register,
attackers may employ attacks that undermine this sparse-memory based information hiding [21, 29, 50]. To
prevent such attacks, Mardu reserves a 2 GB virtual memory space for the shadow stack (the same way Mardu

allocates code/library space) and chooses a random ofset to map the shadow stack; all other pages in the 2 GB
space are mapped as an abort page. Regarding randomization entropy of shadow stack hiding, we take an example
of a process that uses sixteen pages for the stack. In such a case, the possible shadow stack positions are:

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 15

o f positions = (MEMSIZE − STACKSIZE)/PAGESIZE

= (231 − 16 ∗ 212)/212 = 524, 272
(1)

thereby, the probability of successfully guessing a valid shadow stack address is one in 524,272, practically
infeasible. Even assuming if attackers are able to identify the 2 GB region for the shadow stack, they must also
overcome the randomization entropy of the ofset to get a valid address within this region (winning chance:
roughly one in 231, as Mardu’s shadow stack can start at an arbitrary address within a page and not align to the
4K-page boundary); any incorrect probe will generate a crash, trigger re-randomization, thwarting the attack.

Entropy. Mardu applies both function-level permutation and random start ofset to provide a high entropy to
the randomized code layout. In particular,Mardu permutates all functions in each executable at each time of
randomization. In this way, randomization entropy (Ef unc) depends on the number of functions in the executable
(n), and the entropy gain can be formulated as:

Ef unc = loд2 (n!) (2)

Additionally,Mardu applies a random start ofset to the code area in 2 GB space in each randomization. Because
the random ofset could be anywhere in 2 GB range excluding the size of trampoline region and twice the size of
the program (to avoid overlapping), the entropy gain by the random ofset (Eof f) can be formulated as:

Eof f = loд2 (2
31
− sizeo f (trampoline) − 2×sizeo f (proдram)) (3)

and the total entropy that Mardu provides is:

EMardu = Ef unc + Eof f (4)

We take an example of 470.lbm in SPECCPU2006, a case which provides theminimum entropy in our evaluation.
The program contains 16 functions, and the entire size of the program including trampoline instrumentation is
less than 64 KB. In such a case, the total entropy is:

Ef unc = loд2 (16!) > 44.25,

Eof f = loд2 (2
31
− 2 × 64K) > 30.99

(5)

EMardu = Ef unc + Eof f > 74.24 (6)

Therefore, even for a small program, Mardu randomizes the code with signiicantly high entropy (74 bits) to
render an attacker’s success rate for guessing the layout negligible.

6.1.2 Atacks against Continuous Re-randomization.

Against low-proile attacks (A3). Mardu does not rely on timing nor system call history for triggering

re-randomization. As a result, neither low-latency attacks nor attacks without involving system calls are efective
against Mardu. Instead, re-randomization is triggered and performed by any Mardu instrumented application
process that encounters a crash (e.g., XoM violation). Nonetheless, a potential A3 vector could be one that does

Digit. Threat. Res. Pract.

16 • C. Jelesnianski et al.

 0

 5

 10

 15

 20

 25

 30

p
e
rlb

e
n
ch

b
zip

2
g
cc

m
cf

m
ilc

g
o
b
m

k
h
m

m
e
r

sje
n
g

lib
q
u
a
n
tu

m
h
2
6
4
re

f
lb

m

sp
h
in

x
3

g
e
o
m

e
a
n

P
e
rf

o
rm

a
n
c
e

 o
v
e
rh

e
a
d
 (

%
) Trampoline only (no shadow stack)

Full Mardu (trampoline + shadow stack)

Fig. 5. Mardu performance overhead breakdown

for SPEC Fig. 6. Performance comparison of NGINX web server

not cause any crash during exploitation (e.g., attackers may employ crash-resistant probing [21, 24, 29, 41, 50]).
In this regard, Mardu places all code in execute-only memory within 2 GB mapped region. Such a stealth attack
could only identify multiples of 2 GB code regions and will fail to leak any layout information.

Against code pointer ofsetting attacks (A4). Attackersmay attempt to launch this attack by adding/subtracting
ofsets to a pointer. To defend against this, Mardu decouples any correlation between trampoline function entry

addresses and function body addresses (i.e., no ixed ofset), so attackers cannot refer to the middle of a function
for a ROP gadget without actually obtaining a valid function body address. Additionally, the trampoline region is
also protected with XoM, thus attackers cannot probe it to obtain function body addresses to launch A4. Mardu

limits available code-reuse targets to only exported functions in the trampoline.

6.1.3 Beyond ROP atacks.

Attack analysis with NEWTON. To measure the boundary of viable attacks against Mardu, we present a

security analysis of Mardu based on the threat model set by NEWTON [68]. In this regard, we analyze possible
writable pointers that can change the control low of a program (write constraints) as well as possible available
gadgets in Mardu (target constraints), which will reveal what attackers can do under this threat model. In short,
Mardu allows only the reuse of exported functions via call trampolines.

For write constraints, attackers cannot overwrite real code addresses such as return addresses or code addresses
in the trampoline. Mardu only allows attackers to overwrite other types of pointer memory, e.g., object pointers
and pointers to the call trampoline. For target constraints, attackers can reuse only the exported functions via call
trampoline. Note that a function pointer is a reusable target in any re-randomization techniques using immutable
code pointers [12, 70, 74]. AlthoughMardu allows attackers to reuse function pointers in accessible memory (e.g.,
a function pointer in a structure), such live addresses will never include real code addresses or return addresses,
and will be limited to addresses only referencing call trampolines. Under these write and target constraints, inferring
the location of ROP gadgets from code pointers (e.g., leaking code addresses or adding an ofset) is not possible.

6.2 Performance Evaluation

Runtime performance overhead with SPEC CPU2006. Figure 5 shows the performance overhead of SPEC
with Mardu trampoline only instrumentation (which does not use a shadow stack) as well as with a full Mardu

implementation. Both of these numbers are normalized to the unprotected and uninstrumented baseline, compiled
with vanilla Clang. Note that this performance overhead is the base incured overhead of security hardening
an application with Mardu. In the rare case, that the application were to come under attack, on-demand re-
randomization would be triggered inducing additional brief performance overheads. We discuss the performance
overhead of Mardu under active attack in ğ6.3.

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 17

Figure 5 does not include a direct performance comparison to other randomization techniques asMardu is
substantially diferent in how it implements re-randomization and the source code of closely related systems,
such as Shuler [74] and CodeArmor [12], is not publicly available. It is not based on timing nor system call
history compared to previous works. This peculiar approach allowsMardu’s average overhead to be comparable
to the fastest re-randomization systems and its worst-case overhead signiicantly better than similar systems.
The average overhead of Mardu is 5.5%, and the worst-case overhead is 18.3% (perlbench); in comparison to
Shuler [74] and CodeArmor [12], whose reported average overheads are 14.9% and 3.2%, and their worst-case
overhead are 45% and 55%, respectively (see Table 1). TASR [8] shows a very practical average overhead of 2.1%;
however, it has been reported by Shuler [74] and ReRanz [70] that TASR’s overhead against a more realistic
baseline (not using compiler lag -Og) is closer to 30-50% overhead. This conirms Mardu is capable of matching
if not slightly improving the performance (especially worst-case) overhead, while casting a wider net in terms of
known attack coverage.

Mardu’s two sources of runtime overhead are trampolines and the shadow stack. Mardu uses a compact
shadow stack without a comparison epilogue whose sole purpose is to secure return addresses. Speciically, only
4 additional assembly instructions are needed to support our shadow stack. Therefore we show the trampoline
only coniguration to clearly diferentiate the overhead contribution of each component. Figure 5 showsMardu’s
shadow stack overhead is negligible with an average of less than 0.3%, and in the noticeable gaps, adding less than
2% in perlbench, gobmk, and sjeng. The overhead in these three benchmarks comes from the higher frequency of
short function calls, making shadow stack updates not amortize as well as in other benchmarks. In the cases where
FullMardu is actually faster than the Trampoline only version (e.g., bzip2, gcc, and h264ref), we investigated
and found that our handcrafted assembly for integrating the trampolines with the regular stack in the Trampoline
only version can inadvertantly cause elevated amounts of branch-misses, leading to the expected performance
slowdown.

6.3 Scalability Evaluation

Runtime performance overhead with NGINX. NGINX is conigured to handle a max of 1024 connections
per processor, and its performance is observed according to the number of worker processes. wrk [28] is used to
generate HTTP requests for benchmarking. wrk spawns the same number of threads as NGINX workers and
each wrk thread sends a request for a 6745-byte static html. To see worst-case performance, wrk is run on the same

machine as NGINX to factor out network latency unlike Shuler. Figure 6 presents the performance of NGINX with
and withoutMardu for a varying number of worker processes. The performance observed shows thatMardu

exhibits very similar throughput to vanilla.Mardu incurs 4.4%, 4.8%, and 1.2% throughput degradation on average,
at peak (12 threads), and at saturation (24 threads), respectively. Note that Shuler [74] sufers from overhead
from its per-process shuling thread; just enabling Shuler essentially doubles CPU usage. Even in their NGINX

experiments with network latency (i.e., running a benchmarking client on a diferent machine), Shuler shows 15-55%

slowdown. This veriiesMardu’s design that having a crashing process perform system-wide re-randomization,
rather than a per-process background thread as in Shuler, scales better.

Load-time randomization overhead. We categorize load-time to cold or warm load-time whether the in-
kernel code cache (2 in Figure 3) hits or not. Upon a code cache miss (i.e., the executable is irst loaded in a
system), Mardu performs initial randomization including function-level permutation, start ofset randomization
of the code layout, and loading & patching of ixup metadata. As Figure 7 shows, all C SPEC benchmarks showed
negligible overhead averaging 95.9 msec. gcc, being the worst-case, takes 771 msec; it requires the most (291,699
total) ixups relative to other SPEC benchmarks, with ≈9,372 ixups on average. perlbench and gobmk are the
only other outliers, having 103,200 and 66,900 ixups, respectively; all other programs have <<35K ixups (refer
to Table 2). For NGINX, we observe that load time is constant (61 msec) for any number of speciied worker

Digit. Threat. Res. Pract.

18 • C. Jelesnianski et al.

 0

 100

 200

 300

 400

 500

 600

p
e
rlb

e
n
ch

b
zip

2
g
cc

m
cf

m
ilc

g
o
b
m

k
h
m

m
e
r

sje
n
g

lib
q
u
a
n
tu

m
h
2
6
4
re

f
lb

m

sp
h
in

x
3

n
g
in

x

L
o
a
d
-t

im
e
 r

a
n
d

(m
s
e
c
)

a
v
e
ra

g
e

Fig. 7. Cold load-time randomization overhead

 0

 5

 10

 15

p
e
rlb

e
n
ch

b
zip

2
g
cc

m
cf

m
ilc

g
o
b
m

k
h
m

m
e
r

sje
n
g

lib
q
u
a
n
tu

m
h
2
6
4
re

f
lb

m

sp
h
in

x
3

n
g
in

x

R
e
-r

a
n
d
 l
a
te

n
c
y

(m
s
e
c
)

a
v
e
ra

g
e

Fig. 8. Runtime re-randomization latency

processes. Cold load-time is roughly linear to the number of trampolines. Upon a code cache hit, Mardu simply
maps the already-randomized code to a user-process’s virtual address space. Therefore we found that warm
load-time is negligible. Note that, for a cold load-time of musl takes about 52 msec on average. Even so, this is
a one time cost; all subsequent warm load-time accesses of fetching musl takes below 1µsec, for any program
needing it. Thus, load time can be largely ignored.

Re-randomization latency. Figure 8 presents time to re-randomize all associated binaries of a crashing process.
The time includes creating & re-randomizing a new code layout, and reclaiming old code (1 - 4 in Figure 4).
We emulate an XoM violation by killing the process via a SIGBUS signal and measured re-randomization time
inside the kernel. The average latency of SPEC is 6.2 msec. The performance gained between load-time and
re-randomization latency is fromMardu taking advantage of metadata being cached from load-time, meaning no
redundant ile I/O penalty is incurred. To evaluate the eiciency of re-randomization onmulti-process applications,
we measured the re-randomization latency with varying number of NGINXworker processes up to 24. We conirm
latency is consistent regardless of number of workers (5.8 msec on average, 0.5 msec std. deviation).

Re-randomization overhead under active attacks. In addition, a good re-randomization system should
exhibit good performance not only in its idle state but also under stress from active attacks. To evaluate this,
we stress test Mardu under frequent re-randomization to see how well it can perform, assuming a scenario
thatMardu is under attack. In particular, we measure the performance of SPEC benchmarks while triggering
frequent re-randomization. We emulate the attack by running a background application, which continuously
crashes at the given periods: 1 sec, 100 msec, 50 msec, 10 msec, and 1 msec. SPEC benchmarks and the crashing
application are linked with the Mardu version of musl, forcing Mardu to constantly re-randomize musl and
potentially incur performance degradation on other processes using the same shared library. In this experiment,
we choose three representative benchmarks, milc, sjeng, and gobmk, that Mardu exhibits a small, medium, and
large overhead in an idle state, respectively. Figure 9 shows that the overhead is consistent, and in fact, is very
close to the performance overhead in the idle state observed in Figure 5. More speciically, all three benchmarks
difer by less than 0.4% at a 1 sec re-randomization interval. When we decrease the re-randomization period to
10 msec and 1 msec, the overhead is quickly saturated. Even at 1 msec re-randomization frequency, the additional
overhead is under 6 %. These results show that Mardu provides performant system-wide re-randomization even
under active attack.

File size overhead. Figure 10 and Table 2 show how much binary iles increase withMardu compilation. In
our implementation, ile size increase comes from transforming the traditional x86-64 calling convention with the
one designed forMardu (besides calls to outside libraries). On average,Mardu compilation with trampolines
increases the ile size by 66%. One would assume that applications with more call sites incur a higher overhead as
we are adding 5 instructions for every call and 4 instructions for every retq (e.g., perlbench, gcc, milc, & gobmk
are the only benchmarks with over 100% increase, being 108%, 110%, 101%, & 104% respectively).

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 19

(a) milc (b) sjeng (c) gobmk

Fig. 9. Overhead varying re-randomization frequency

 0

 20

 40

 60

 80

 100

 120

p
e
rlb

e
n
ch

b
zip

2
g
cc

m
cf

m
ilc

g
o
b
m

k
h
m

m
e
r

sje
n
g

lib
q
u
a
n
tu

m

h
2
6
4
re

f
lb

m
sp

h
in

x
3

n
g
in

x

F
il
e
 s

iz
e
 i
n
c
re

a
s
e
 (

%
)

a
v
e
ra

g
e

Fig. 10. File size increase withMardu compilation

Table 2. Breakdown of Mardu instrumentation

Benchmark
Numbers of Fixups Binary Increase (bytes)

Call Tr. Ret Tr. PC-rel. addr Total Trampolines Metadata Total

perlbench 1596 39174 62430 103200 1115136 2607559 3722695
bzip2 66 926 896 1888 17568 78727 96295
gcc 4015 118617 169067 291699 3074672 6276870 9351542
mcf 23 94 208 325 1824 19056 20880
milc 234 3531 7256 11021 110688 313620 424308
gobmk 2388 22880 41632 66900 726176 3085208 3811384
hmmer 452 5145 9925 15522 139216 574446 713662
sjeng 129 1368 5418 6915 58912 250234 309146
libquantum 97 1659 1424 3180 25952 93222 119174
h264ref 508 5874 14824 21206 278240 714629 992869
lbm 16 75 260 351 1920 16549 18469
sphinx3 308 4958 8010 13276 103920 409814 513734
NGINX 1497 15004 18984 35485 416736 1309708 1726444
musl libc 4400 10009 7594 22003 192153 1238071 1430224

Runtimememory savings. While there is an upfront one-time cost for instrumenting withMardu, the savings
greatly outweigh this. To illustrate, we show a typical use case of Mardu in regards to shared code. musl is

Digit. Threat. Res. Pract.

20 • C. Jelesnianski et al.

≈800 KB in size, instrumented is 2 MB. Speciically, musl has 14K trampolines and 7.6K ixups for PC-relative
addressing, the total trampoline size is 190 KB and the amount of loaded metadata is 1.2 MB (Table 2). Since
Mardu supports code sharing, only one copy of libc is needed for the entire system. Backes et al. [6] and Ward et
al. [71] also highlighted the code sharing problem in randomization techniques and reported a similar amount of
memory savings by sharing randomized code. Finally, note that the use of our shadow stack does not increase the
runtime memory footprint beyond the necessary additional memory page allocated to support the shadow stack
and the increase in code size from our shadow stack instrumentation. Mardu solely relocates return addresses
from the normal stack to the shadow stack.

System-wide Performance Estimation. Deploying Mardu system-wide for all applications and all shared
libraries requires additional engineering efort of recompiling the entire Linux distribution. Instead, we get an
estimate of how Mardu would perform on a regular Linux server during boot time. We obtain this estimate
based on the fact that Mardu’s load-time overhead increases linearly with the total number of functions and
call sites present in an application or library. We calculate the estimated boot overhead if the entire system was
protected byMardu. Referencing Figure 2,Mardu requires one trampoline per function containing one ixup,
and one return trampoline per callsite containing three ixups. In addition, all PC-relative instructions must be
patched. Therefore the total number of ixups to be patched is as follows:

Total # Fixups = # Functions + (# Callsites ∗ 3) + # PC relative Instructions (7)

Extrapolating from Mardu ’s load-time randomization overhead in Figure 7, where gcc has most ixups at
291,699 and takes 771 ms, this makes each ixup take approximately 2.6 µsec. We recorded all executables launched
as well as all respective loaded libraries in our Linux server to calculate the additional overhead imposed by
Mardu during boot time. We included all programs run within the irst 5 minutes of boot time as well as looking
at the current system load. In ive minutes after the system booting, we recorded a total of 117 no longer active
processes and recorded 265 currently active processes, using a total of 784 unique libraries. The applications
contained a total of 8,862 functions, a total of 472,530 callsites, and 415,951 total PC-relative instructions. Using
Equation 7 from above, this gave a total of 1,842,403 ixups if all launched applications were Mardu enabled.
The libraries contained a total of 223,415 functions, a total of 4,450,488 callsites, and 2,514,676 total PC-relative
instructions; this gave a total of 16,089,555 ixups for shared libraries. Using our estimation from gcc, we can
approximate that patching all ixups including both application ixups and shared library ixups (a total of
17,931,958 ixups) for aMardu enabled Linux server will take roughly ≈46.6 additional seconds, compared to a
vanilla boot. To give a little more insight, application ixups contribute only ≈4.8 seconds of delay; the majority
of overhead comes from randomization of the shared libraries. However, note that this delay is greatly amortized
as many libraries are shared by a large number of applications, compared to the scenario where each library is
not shared (e.g., statically-linked) and needs a separate randomized copy for each application requiring it.

System-wide Memory Savings Estimation. Similarly, we give a system-wide snapshot of memory savings
observed when Mardu’s randomized code sharing is leveraged. For this, we again use the same Linux server for
system-wide estimation. The vanilla total ile size of 784 unique libraries is approximately 787 MB. From our
scalability evaluation, Figure 10, showing thatMardu roughly increases ile size by 66% on average, this total ile
size would grow to 1,306 MB if all were instrumented with Mardu. While this does appear to be a large increase,
it is a one time cost as code sharing is enabled underMardu. From our Linux server having 265 processes, 127 of
had mapped libraries. If code sharing is not supported, each process needs its own copy of a library in memory.
We counted each library use and multiplied by its size to get the total non-sharing memory usage. For our Linux
server, this non-sharing would incur approximately a 8.8 GB overhead. Meaning,Mardu provides approximately

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 21

 60

 70

 80

 90

 100

 110

 120

 130

 140

lib
c.so

ld
.so

lib
d
l.so

lib
p
th

re
a
d
.so

lib
rt.so

lib
se

lin
u
x
.so

.1

lib
p
cre

.so
lib

z.so
lib

re
so

lv.so
lib

g
cc

s .so
lib

u
u
id

.so
lib

p
cre

.so
lib

g
lib

.so
lib

g
p
g
-e

rro
r.so

lib
g
cry

p
t.so

lib
b
lkid

.so
lib

m
o
u
n
t.so

lib
lzm

a
.so

lib
ffi.so

lib
g
m

o
d
u
le

.so

lib
g
o
b
je

ct.so
lib

g
io

.so
lib

lz4
.so

lib
m

.so
lib

sy
ste

m
d
.so

lib
d
b
u
s-1

.so

S
h
a
re

d
 l
ib

 r
e
fe

re
n
c
e
 c

o
u
n
t

Library, ordered from most used

Fig. 11. Top 25 shared libraries with their reference count on our idle Linux server ordered from most linked to least linked

libraries.

 0

 50000

 100000

 150000

 200000

 250000

lib
c.so

ld
.so

lib
d
l.so

lib
p
th

re
a
d
.so

lib
rt.so

lib
se

lin
u
x
.so

.1

lib
p
cre

.so
lib

z.so
lib

re
so

lv.so

lib
g
cc

s .so
lib

u
u
id

.so
lib

p
cre

.so
lib

g
lib

.so
lib

g
p
g
-e

rro
r.so

lib
g
cry

p
t.so

lib
b
lkid

.so
lib

m
o
u
n
t.so

lib
lzm

a
.so

lib
ffi.so

lib
g
m

o
d
u
le

.so

lib
g
o
b
je

ct.so

lib
g
io

.so
lib

lz4
.so

lib
m

.so
lib

sy
ste

m
d
.so

lib
d
b
u
s-1

.so

784,494 Kb

M
e
m

o
ry

 S
a
v
in

g
s
 (

K
b
)

Library, ordered from most used

Memory Savings (Kb)

Fig. 12. Estimated runtime memory savings with shared memory Mardu approach for the top 25 most linked libraries on

our idle Linux server.

7.5 GB memory savings through its inherent code sharing design. This memory savings is compared to if these
libraries were individually and separately statically linked to each of the running processes.
To get how many times each library is shared by multiple processes, we analyzed each process’s memory

mapping on our Linux server by investigating /proc/{PID}/maps. Figure 11 presents the active reference count
for the 25 most linked shared libraries on our idle Linux server. The 25 most linked shared libraries are referenced
over ≈106 times on average, showing that dynamically linked libraries really do save a lot of memory compared
to a non-shared approach. For the same 25 most linked shared libraries, we also demonstrate in Figure 12 the
estimated memory savings obtained for each of those libraries ifMardu was used instead of an approach that
does not support sharing of code. Notice that some of our biggest memory savings come from libc.so and
libm.so, very commonly used libraries thatMardu saves almost 0.80 GB and 0.25 GB of memory for, respectively.

We also show the entire system snapshot (including all 784 unique libraries) in the form of a CDF for both the
unique library link count in Figure 13 and cumulative memory savings in Figure 14 if Mardu were to be applied
and used system wide for all dynamically linked libraries. From Figure 13, it can be seen that approximately 150
libraries are in the 75th percentile of link count.

Digit. Threat. Res. Pract.

22 • C. Jelesnianski et al.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 100
 200

 300
 400

 500
 600

 700
 800

S
h
a
re

d
 l
ib

ra
ry

 C
D

F

Library, ordered from most used

Fig. 13. CDF of shared library occurance on a idle Linux

server.

 0

 1x106
 2x106
 3x106
 4x106
 5x106
 6x106
 7x106
 8x106

 0 100
 200

 300
 400

 500
 600

 700
 800

M
e
m

o
ry

 S
a
v
in

g
s
 C

D
F
 (

K
b
)

Library, ordered from most used

Fig. 14. CDF plot of estimated runtime memory savings with

Mardu’s shared memory approach.

7 DISCUSSION AND LIMITATIONS

Applying Mardu to binary programs. Although our currentMardu prototype requires access to source code,
applying Mardu directly to binary programs is possible. Mardu requires detecting all function call transfers
(call/ret) and instrumenting them to use trampolines in order to keep control transfers semantically correct
with re-randomization. A potential way to enable this is to apply techniques that can retrieve precise disassembly
from a given binary, such as BYTEWEIGHT [7], to identify possible call targets. A more recent innovation,
Egalito [75], a binary recompiler, showed that it is possible to raise (stripped) modern Linux binaries into a
low level intermediate representation (IR). Their standalone, layout-agnostic IR is precise and allows arbitrary
modiications. This approach would allow binary code or legacy binaries to be directly instrumented such that
transfers utilize trampolines via binary re-writing. Leveraging re-assembleable assembly, Retrowrite [20], also
ofers a binary transformation framework for 64-bit position-independent binaries. This work makes it plausible
that Mardu could leverage their underlying binary-rewriting framework to instrument a popular and important
class of binaries, as well as notably third-party shared libraries. Either of these recent approaches would enable
Mardu to perform security hardening to software distributed as binaries to end-users.

Security of Protection Keys for Userspace. As briely mentioned in ğ3, native MPK applications containing
wrpkru instructions are not supported on a Mardu system. If there exists a running native MPK application that
contains wrpkru instructions on the host system, there does exist an attack scenario that could victimize this native
MPK application and break the guarantees and assumptions set by Mardu. To elaborate, if any applications
have wrpkru instructions, it possible for a cross-process MPK attack to occur such that all Mardu guarded code
(protected under an XoM domain) could be made accessible to the attacker, (i.e., this could done via an attack
vector not covered byMardu, such as data/argument corruption) leveraging the secondary process containing
wrpkru instructions, and efectively disabling Mardu.

To remedy this current limitation,Mardu could be extended to include and use HODOR [32] or ERIM [66]
style approaches. Instrumenting hardware watchpoints to vet wrpkru instruction execution at runtime, or perform
binary rewriting to generate functionally equivalent assembly where unintended wrpkru instructions occur in
the code region, respectively, would then allowMardu to support and properly protect applications containing
native wrpkru instructions.

Full-function reuse attacks. Throughout our analysis, we show that existing re-randomization techniques
that use a function trampoline or indirection table [12, 74], i.e., use immutable (indirect) code pointer across re-
randomization, cannot prevent full-function reuse attacks. This also afectsMardu; although limited to functions
exposed in the trampoline, Mardu cannot defend against an attacker re-using such exposed immutable code
pointers as gadgets by leaking code pointers and believe that this is a limitation of using immutable code pointers.

Digit. Threat. Res. Pract.

Securely Sharing Randomized Code that Flies • 23

That being said, a possible workaround could be to utilize a monitoring mechanism limited to tracking function
pointer assignment. While this approach would be cumbersome, it will have a much smaller overhead because of
its smaller scope leading to being more secure while producing less overhead than Shuler [74].

Another possible solution to prevent these attacks could be pairingMardu together with control-low-integrity
(CFI) [2, 13, 25, 30, 31, 46, 48, 49, 52, 55, 64, 67, 69, 76, 77], code-pointer integrity/separation (CPI/CPS) [44], or
other hardware-assisted solutions such as Intel’s Control-low Enforcement Technology (CET) [36] and ARM’s
Pointer Authentication Code (PAC) [56]. Mardu’s defense is orthogonal to forward-edge protection like CFI. We
say this because we hope that a technique (whether it is CFI-based or not) is made such that precise and eicient
forward-edge security can be guaranteed; so applying both defenses can complement each other to provide better
security. Mardu already provides precise backward-edge CFI via shadow stack, so forward-edge CFI can also be
leveraged to further reduce available code-reuse targets.
Note that completely eliminating full-function code reuse and data-oriented programming [35] with low

performance overhead and system-wide scalability currently remains an open problem.

8 CONCLUSION

While current defense techniques are capable of defending against current ROP attacks, most designs inherently
tradeof well-rounded performance and scalability for their security guarantees. Hence, we introduceMardu,
a novel on-demand system-wide re-randomization technique to combat a majority of code-reuse attacks. Our
evaluation veriies Mardu’s security guarantees against known ROP attacks and adequately quantiies its high
entropy. Mardu’s performance overhead on SPEC CPU2006 and multi-process NGINX averages 5.5% and 4.4%,
respectively, showing that scalability can be achieved with reasonable performance. By being able to re-randomize
on-demand, Mardu eliminates both costly runtime overhead and integral threshold components associated with
current continuous re-randomization techniques. Mardu is the irst code-reuse defense capable of code-sharing
with re-randomization to enable practical security that scales system-wide.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insightful comments. This work is supported in part
by US Oice of Naval Research under grants N00014-18-1-2022.

REFERENCES

[1] 2019. musl libc. (2019). https://wiki.musl-libc.org/.
[2] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-low integrity. In Proceedings of the 12th ACM Conference on

Computer and Communications Security (CCS). Alexandria, VA.
[3] Amazon. 2019. Amazon EC2 C5 Instances. (2019). https://aws.amazon.com/ec2/instance-types/c5/.
[4] ARM. 2019. ARM Compiler Software Development Guide: 2.21 Execute-only memory. (2019). http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.dui0471j/chr1368698326509.html.
[5] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürnberger, and Jannik Pewny. 2014. You can run but you

can’t read: Preventing disclosure exploits in executable code. In Proceedings of the 21st ACM Conference on Computer and Communications

Security (CCS). Scottsdale, Arizona.
[6] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-Grained Memory Randomization Practical by Allowing Code

Sharing. In Proceedings of the 23rd USENIX Security Symposium (Security). San Diego, CA.
[7] Tifany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley. 2014. BYTEWEIGHT: Learning to Recognize Functions

in Binary Code. In Proceedings of the 23rd USENIX Security Symposium (Security). San Diego, CA.
[8] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed Okhravi. 2015. Timely Rerandomization for Mitigating

Memory Disclosures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS). Denver,
Colorado.

[9] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh. 2014. Hacking blind. In Proceedings of the 35th IEEE

Symposium on Security and Privacy (Oakland). San Jose, CA.

Digit. Threat. Res. Pract.

https://wiki.musl-libc.org/
https://aws.amazon.com/ec2/instance-types/c5/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471j/chr1368698326509.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471j/chr1368698326509.html

24 • C. Jelesnianski et al.

[10] Kjell Braden, Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Stephen Crane, Michael Franz, and Per Larsen. 2016. Leakage-
Resilient Layout Randomization for Mobile Devices. In Proceedings of the 2016 Annual Network and Distributed System Security Symposium

(NDSS). San Diego, CA.
[11] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining Light on Shadow Stacks. In Proceedings of the 40rd IEEE Symposium

on Security and Privacy (Oakland). IEEE, San Francisco, CA.
[12] Xi Chen, Herbert Bos, and Cristiano Giufrida. 2017. CodeArmor: Virtualizing The Code Space to Counter Disclosure Attacks. In

Proceedings of the 2nd IEEE European Symposium on Security and Privacy (Euro S&P). Paris, France.
[13] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H Deng. 2014. ROPecker: A generic and practical approach for

defending against ROP attack. (Feb. 2014).
[14] Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Koppen, Per Larsen, Christopher Liebchen, Mike Perry, and

Ahmad-Reza Sadeghi. 2016. Selfrando: Securing the tor browser against de-anonymization exploits. Proceedings on Privacy Enhancing

Technologies 2016, 4 (2016), 454ś469.
[15] Stephen Crane, Andrei Homescu, and Per Larsen. 2016. Code Randomization: Haven’t We Solved This Problem Yet?. In Cybersecurity

Development (SecDev), IEEE. IEEE, 124ś129.
[16] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael

Franz. 2015. Readactor: Practical Code Randomization Resilient to Memory Disclosure. In Proceedings of the 36th IEEE Symposium on

Security and Privacy (Oakland). San Jose, CA.
[17] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael

Franz. 2015. Return to Where? You Can’t Exploit What You Can’t Find. Proceedings of Black Hat USA (2015).
[18] Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz,

Bjorn De Sutter, and Michael Franz. 2015. It’s a TRaP: Table Randomization and Protection Against Function-reuse Attacks. In Proceedings
of the 36th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA.

[19] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and Fabian Monrose. 2015. Isomeron: Code Randomization
Resilient to (Just-In-Time) Return-Oriented Programming. In Proceedings of the 2015 Annual Network and Distributed System Security

Symposium (NDSS). San Diego, CA.
[20] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020. Retrowrite: Statically instrumenting cots binaries for fuzzing

and sanitization. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1497ś1511.
[21] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tifany Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin

Rinard, and Hamed Okhravi. 2015. Missing the point (er): On the efectiveness of code pointer integrity. In Proceedings of the 36th IEEE

Symposium on Security and Privacy (Oakland). San Jose, CA.
[22] Fedora. 2018. Hardening Flags Updates for Fedora 28. (2018). https://fedoraproject.org/wiki/Changes/HardeningFlags28.
[23] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Harris,

Zhixing Xu, Baris Kasikci, Valeria Bertacco, Sharad Malik, Mohit Tiwari, and Todd Austin. 2019. Morpheus: A Vulnerability-Tolerant
Secure Architecture Based on Ensembles of Moving Target Defenses with Churn. In Proceedings of the 24th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS). Providence, RI, USA, 469ś484.
[24] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to

Overcome Diversiication and Information Hiding. In Proceedings of the 2016 Annual Network and Distributed System Security Symposium

(NDSS). San Diego, CA.
[25] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griin: Guarding control lows using intel processor trace. In Proceedings of the 22nd

ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). Xi’an, China.
[26] Jason Gionta, William Enck, and Peng Ning. 2015. HideM: Protecting the Contents of Userspace Memory in the Face of Disclosure

Vulnerabilities. In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy (CODASPY). San Antonio, TX.
[27] Cristiano Giufrida, Anton Kuijsten, and Andrew S Tanenbaum. 2012. Enhanced Operating System Security Through Eicient and

Fine-grained Address Space Randomization. In Proceedings of the 21st USENIX Security Symposium (Security). Bellevue, WA.
[28] Will Glozer. 2019. a HTTP benchmarking tool. (2019). https://github.com/wg/wrk.
[29] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios Portokalidis, Cristiano Giufrida, and Herbert Bos.

2016. Undermining Information Hiding (and What to Do about It). In Proceedings of the 25th USENIX Security Symposium (Security).
Austin, TX.

[30] Jens Grossklags and Claudia Eckert. 2018. τCFI: Type-Assisted Control Flow Integrity for x86-64 Binaries. In Proceedings of the 21th

International Symposium on Research in Attacks, Intrusions and Defenses (RAID). Heraklion, Crete, Greece.
[31] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI: Transparent backward-edge control low violation detection

using intel processor trace. In Proceedings of the 7th ACM Conference on Data and Application Security and Privacy (CODASPY). Scottsdale,
AZ.

[32] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-process Isolation for High-throughput Data Plane Libraries. In Proceedings of the 2019 USENIX Annual Technical Conference (ATC).

Digit. Threat. Res. Pract.

https://fedoraproject.org/wiki/Changes/HardeningFlags28
https://github.com/wg/wrk

Securely Sharing Randomized Code that Flies • 25

Renton, WA.

[33] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W Davidson. 2012. ILR: Where’d My Gadgets Go?. In Proceedings

of the 33rd IEEE Symposium on Security and Privacy (Oakland). IEEE, San Francisco, CA.
[34] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2013. librando: Transparent Code Randomization for Just-in-Time

Compilers. In Proceedings of the 20th ACM Conference on Computer and Communications Security (CCS). Berlin, Germany, 993ś1004.
[35] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang. 2016. Data-oriented programming:

On the expressiveness of non-control data attacks. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 969ś986.
[36] Intel Corporation. 2019. Control-low Enforcement Technology Speciication. (may 2019). https://software.intel.com/sites/default/iles/

managed/4d/2a/control-low-enforcement-technology-preview.pdf.
[37] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual. (2019). https://software.intel.com/en-

us/articles/intel-sdm.
[38] Intel Corporation. 2019. INTEL ® XEON ® SCALABLE PROCESSORS. (2019). https://www.intel.com/content/www/us/en/products/

processors/xeon/scalable.html.
[39] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006. Address space layout permutation (ASLP): Towards

ine-grained randomization of commodity software. In Proceedings of the Annual Computer Security Applications Conference (ACSAC).
[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In Proceedings of the 40rd IEEE

Symposium on Security and Privacy (Oakland). IEEE, San Francisco, CA.
[41] Benjamin Kollenda, Enes Göktaş, Tim Blazytko, Philipp Koppe, Robert Gawlik, Radhesh Krishnan Konoth, Cristiano Giufrida, Herbert

Bos, and Thorsten Holz. 2017. Towards Automated Discovery of Crash-resistant Primitives in Binary Executables. In Proceedings of the

47th International Conference on Dependable Systems and Networks (DSN). Denver, CO.
[42] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis Polychronakis. 2018. Compiler-assisted Code Randomization.

In Proceedings of the 39th IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA.
[43] Hyungjoon Koo and Michalis Polychronakis. 2016. Juggling the gadgets: Binary-level code randomization using instruction displacement.

In Proceedings of the 11th ACM Symposium on Information, Computer and Communications Security (ASIACCS). Xi’an, China.
[44] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In

Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Broomield, Colorado.
[45] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,

Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space. In Proceedings of the 27th

USENIX Security Symposium (Security). Baltimore, MD.
[46] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan. 2017. Transparent and eicient CFI enforcement with

intel processor trace. In Proceedings of the 23rd IEEE Symposium on High Performance Computer Architecture (HPCA). Austin, TX.
[47] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016. How to Make ASLR Win the Clone Wars: Runtime Re-

Randomization. In Proceedings of the 2016 Annual Network and Distributed System Security Symposium (NDSS). San Diego, CA.
[48] Ben Niu and Gang Tan. 2014. Modular control-low integrity. In Proceedings of the 2014 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). Edinburgh, UK.
[49] Ben Niu and Gang Tan. 2015. Per-input control-low integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS). Denver, Colorado, 914ś926.
[50] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano Giufrida. 2016. Poking Holes in Information Hiding.. In

Proceedings of the 25th USENIX Security Symposium (Security). Austin, TX.
[51] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2012. Smashing the gadgets: Hindering return-oriented programming

using in-place code randomization. In Proceedings of the 33rd IEEE Symposium on Security and Privacy (Oakland). IEEE, San Francisco,
CA, 601ś615.

[52] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2013. Transparent ROP Exploit Mitigation Using Indirect Branch
Tracing. In Proceedings of the 22th USENIX Security Symposium (Security). Washington, DC.

[53] Jannik Pewny, Philipp Koppe, Lucas Davi, and Thorsten Holz. 2017. Breaking and Fixing Destructive Code Read Defenses. In Proceedings

of the 12th ACM Symposium on Information, Computer and Communications Security (ASIACCS). Abu Dhabi, UAE, 55ś67.
[54] Marios Pomonis, Theoilos Petsios, Angelos D Keromytis, Michalis Polychronakis, and Vasileios P Kemerlis. 2017. kRˆ X: Comprehensive

Kernel Protection against Just-In-Time Code Reuse. In Proceedings of the 12th European Conference on Computer Systems (EuroSys).
Belgrade, Serbia.

[55] Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection for Virtual Function Calls in COTS C++ Binaries.. In
Proceedings of the 2015 Annual Network and Distributed System Security Symposium (NDSS). San Diego, CA.

[56] Qualcomm, Inc. 2017. Pointer Authentication on ARMv8.3. (january 2017). https://www.qualcomm.com/media/documents/iles/
whitepaper-pointer-authentication-on-armv8-3.pdf.

Digit. Threat. Res. Pract.

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

26 • C. Jelesnianski et al.

[57] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson, Stephen Crane, Christopher Liebchen, Per Larsen, Lucas
Davi, Michael Franz, et al. 2017. Address-Oblivious Code Reuse: On the Efectiveness of Leakage Resilient Diversity. In Proceedings of

the 2017 Annual Network and Distributed System Security Symposium (NDSS). San Diego, CA.
[58] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-libc Without Function Calls (on the x86). In Proceedings

of the 14th ACM Conference on Computer and Communications Security. Alexandria, VA.
[59] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time

Code Reuse: On the Efectiveness of Fine-grained Address Space Layout Randomization. In Proceedings of the 34rd IEEE Symposium on

Security and Privacy (Oakland). IEEE, San Francisco, CA.
[60] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Polychronakis. 2016. Return to the Zombie Gadgets: Undermining

Destructive Code Reads via Code Inference Attacks. In Proceedings of the 37rd IEEE Symposium on Security and Privacy (Oakland). IEEE,
San Jose, CA.

[61] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte: Thwarting memory disclosure attacks using destructive
code reads. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. Denver, Colorado.

[62] The Clang Team. 2021. Clang 12 documentation - Control Flow Integrity. (2021). https://clang.llvm.org/docs/ControlFlowIntegrity.html.
[63] The PAX Team. 2003. Address Space Layout Randomization. (2003). https://pax.grsecurity.net/docs/aslr.txt.
[64] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and Geof Pike. 2014. Enforcing

Forward-Edge Control-Flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security Symposium (Security). San Diego, CA.
[65] Sami Tolvanen. 2018. Control Flow Integrity in the Android kernel. (2018). https://security.googleblog.com/2018/10/posted-by-sami-

tolvanen-staf-software.html.
[66] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure,

Eicient In-process Isolation with Protection Keys (MPK). In Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara,
CA.

[67] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giufrida.
2015. Practical context-sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
Denver, Colorado, 927ś940.

[68] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen, Herbert Bos, and Cristiano Giufrdia. 2017. The Dynamics
of Innocent Flesh on the Bone: Code Reuse Ten Years Later. In Proceedings of the 24th ACM Conference on Computer and Communications

Security (CCS). Dallas, TX.
[69] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias

Athanasopoulos, and Cristiano Giufrida. 2016. A tough call: Mitigating advanced code-reuse attacks at the binary level. In Proceedings

of the 37rd IEEE Symposium on Security and Privacy (Oakland). IEEE, San Jose, CA.
[70] Zhe Wang, Chenggang Wu, Jianjun Li, Yuanming Lai, Xiangyu Zhang, Wei-Chung Hsu, and Yueqiang Cheng. 2017. Reranz: A Light-

weight Virtual Machine to Mitigate Memory Disclosure Attacks. In Proceedings of the 13th International Conference on Virtual Execution

Environments (VEE). Xi’an, China.
[71] Bryan C Ward, Richard Skowyra, Chad Spensky, Jason Martin, and Hamed Okhravi. 2019. The Leakage-Resilience Dilemma. In

Proceedings of the 24th European Symposium on Research in Computer Security (ESORICS). Luxembourg.
[72] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. 2012. Binary stirring: Self-randomizing instruction addresses of

legacy x86 binary code. In Proceedings of the 19th ACM Conference on Computer and Communications Security (CCS). Raleigh, NC.
[73] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z Snow, Fabian Monrose, and Michalis Polychronakis. 2016. No-

execute-after-read: Preventing code disclosure in commodity software. In Proceedings of the 11th ACM Symposium on Information,

Computer and Communications Security (ASIACCS). Xi’an, China.
[74] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P

Kemerlis, Junfeng Yang, and William Aiello. 2016. Shuler: Fast and Deployable Continuous Code Re-Randomization. In Proceedings of

the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Savannah, GA.
[75] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and

Vasileios P Kemerlis. 2020. Egalito: Layout-agnostic binary recompilation. In Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems. 133ś147.
[76] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCamant, Dawn Song, and Wei Zou. 2013. Practical control

low integrity and randomization for binary executables. In Proceedings of the 34rd IEEE Symposium on Security and Privacy (Oakland).
IEEE, San Francisco, CA.

[77] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for COTS Binaries. In Proceedings of the 22th USENIX Security Symposium

(Security). Washington, DC.

Digit. Threat. Res. Pract.

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://pax.grsecurity.net/docs/aslr.txt
https://security.googleblog.com/2018/10/posted-by-sami-tolvanen-staff-software.html
https://security.googleblog.com/2018/10/posted-by-sami-tolvanen-staff-software.html

	Abstract
	1 Introduction
	2 Code Layout (Re-)Randomization
	2.1 Attacks against Load-time Randomization
	2.2 Defeating A1/A2 via Continuous Re-randomization
	2.3 Attacks against Continuous Re-randomization

	3 Threat Model and Assumptions
	4 Mardu Design
	4.1 Overview
	4.2 Mardu Compiler
	4.3 Mardu Kernel

	5 Implementation
	5.1 Mardu Compiler
	5.2 Mardu Kernel
	5.3 Limitation of Our Prototype Implementation

	6 Evaluation
	6.1 Security Evaluation
	6.2 Performance Evaluation
	6.3 Scalability Evaluation

	7 Discussion and Limitations
	8 Conclusion
	Acknowledgments
	References

