
Building	Trust	in	the	User	I/O	
in	Computer	Systems

Yeongjin Jang
Georgia	Institute	of	Technology

Problem	Statement

• User	I/O	is	important
• Input	controls	system	/	output	contains	sensitive	data
• User	input/output	makes	security	decision

• Many	attack	points	on	the	systems
• Neither	isolated	nor	protected
• Attackers	modify	/	inject	/	eavesdrop	I/O	data

1

Thesis	Scope

• Building	trusted	user	I/O	path	in	computer	systems
• Do	not	let	attacker	intervene	in	the	I/O	path

• Approaches
• Analyze	systems’	user	I/O	paths	and	threats	on	them
• Build	security	mechanisms	to	block	attack	pathways	by	guaranteeing:

• Integrity
• Confidentiality
• Authenticity

2

Thesis	Topics

• Integrity	of	User	Input
• Gyrus	– authorizing	network	traffic	output	using	user	input	information

• Confidentiality	of	User	I/O
• M-aegis	– providing	end-to-end	encryption	of	user	I/O	in	messaging	apps

• Authenticity	of	User	I/O
• A11y	attacks	– presenting	attacks	caused	by	missing	authenticity	check

• Assurance	of	User	I/O
• SGX-USB	– establishing	a	secure	USB	I/O	channel	in	Intel	SGX

3

Gyrus:	Protecting	the	Integrity	of	User	Input

4

Send	$1.00 to
Yeongjin

Click!
Processing…

Send	$1.00 to
Yeongjin

Motivation

• User	controls	system	by	supplying	input

• Think	a	computer	as	a	function:
• On	user’s	input,	there	will	be	an	output

• Can	we	make	a	system	that	only	generates	a	“correct”	output	that	
correspond	to	the	input?

5

F(𝑥)	=	2𝑥4 8

Matching	Network	Output	to	User	Input

6

Can	we	use	utilize	user	inputs	as	basis	for
a	correct	behavior	to	block	attacks?

E.g.,	only	allow	the	traffic	that	matches	with	user	input

• User	types	”send	$1.00	to	Yeongjin”
• Expected	network	output:	send	$1.00 to	Yeongjin

• A	malware	in	the	system	can	alter	the	value	of	network	output
• Malicious	network	output:	send	$1000.00 to	Bob

• But,	user	input	has	the	correct	values Send	$1.00 to	Yeongjin

Related	Work

• Use	Timing	Information	for	User	Intent	Detection
• BINDER	[Cui	et	al.,	ACSAC	‘05]
• Not-A-Bot	[Gummadi et	al.,	NSDI	‘09]

• Method
• Monitor	physical	keystroke/mouse	clicks
• A	network	packet	sent	within	a	short-time	after	user	action	is	user	intended

• Tnetwork – Tinput <	Tthreshold
• E.g.,	packet	sent	500ms	after	user’s	action

7

Related	Work

• Use	UI	Widget	for	User	Intent	Detection
• User-driven	Access	Control	[Roesner et	al.,	Oakland	’12]

• Bind	permissions	with	UI	widget
• Only	grant	permission	to	resource	if	the	user	clicks	a	widget

8

Use	On-screen	Text	as	User’s	Intention

• New	security	policy:	What	You	See	is	What	You	Send	(WYSIWYS)
• Assume	on-screen	text	is	user-intended	input
• Only	allow	outgoing	traffic	that	matches	to	on-screen	text

Send	Yeongjin,	$1.00

Send	Bob,	$1000.00

9

Yeongjin

$1.00

Examples

• We	can	infer	expected	network	output	from	on-screen	text

10

User	Input Network	Output

Cases	of	WYSIWYS

• Internet	Messenger
• Messaging,	e-mail,	etc.

• Submitting	text-forms
• Online	banking,	online	social	network	(facebook),	etc.

• Not	WYSIWYS
• Uploading	files
• Encrypted	traffic	->	Man-in-the-middle	proxy	can	handle	standard	
encryption(TLS)

11

Threat	Model

• Not	trusted
• OS	and	all	lower	privileged	programs

• Trusted
• Virtual	machine	monitor	and	programs	in	dom0
• Input	devices
• Display	device

• No	physical	access	to	the	machine

12

Design

• Capturing	User-intended	Input
• What	you	see

• Monitoring	Network	Traffic
• What	you	send

• Protecting	Security	Monitor
• A	secure	way	of	matching	what	you	see	and	what	you	send

13

Read	On-screen	Text	from	UI	Elements

• UIAutomation

14

Per-application	Signature

15

Monitoring	Network	Traffic

• Deep	packet	inspection
• Redirect	network	traffic	into	a	proxy,	then	inspect	the	content

• Encrypted	traffic
• Use	man-in-the-middle	proxy	to	decrypt,	inspect,	then	encrypt	again

• Text	transformation
• We	can	apply	same	transformation	to	the	user	input
• E.g.,	”Hi	there”	->	Hi%20there

16

Monitoring	Network	Traffic

• Use	database	to	store	user	interaction	data

17

Send	$1.00 to	Yeongjin
Click!

Processing… Send	$1.00 to	Yeongjin

Store	(Paypal,	$1.00,	Yeongjin) Query	(Paypal,	$1.00,	Yeongjin)

Protecting	Security	Monitor

• Modern	malwares	have	the	highest	privilege	in	OS	(i.e.,	root)
• To	monitor	the	system,	we	need	more	higher	privilege

18

User	VMSecurity	Monitor

Hypervisor

• Virtual	machine	isolation
• Hypervisor	isolates	security	monitor

• User	VM	cannot	attack	security	monitor

• Security	monitor	can	inspect	User	VM	
through	Hypervisor

Data	from	User	VM	is	not	Trustful

• UIAutomation data	from	User	VM
• Attackers	can	alter	the	data
• On	screen:	send	Yeongjin $1.00
• On	UI	Element:	send	Bob	$100.00
• The	system	will	catch	(Bob,	$100)	instead	of	(Yeongjin,	$1.00)

19

Yeongjin
$1.00

Bob
$100.00

Bob,	$100.00

Security	Overlay

20
Combined	Screen

What	You	See	==	What	Monitor	Captured

• Receive	UI	data	from	untrusted	VM

• Re-draws	all	editboxes in	secure	domain
• Draw	at	the	exactly	same	location,	size,	etc.
• Update	text	on	each	change	(Autocomplete)

• User	will	only	see	the	data	at	the	overlay
• Make	sure	our	security	monitor	correctly	
capture	the	intended	text	

21

Gyrus	Workflow	with	Paypal

22

On	clicking	Continue,
Stores	e-mail	and	amount	

Guest	VM

Network
Application
(e.g,	Paypal)

UI
Monitor

Security
Overlay

Hypervisor

Security	Monitor	VM

Auth
DB

Network	Device Input	Device

Security
MonitorNetwork

Monitor

“ACTION”	:	“Paypal Send”,
“Recipient”	:	yeongjinjanggrad@gmail.com,
“Amount”	:	“1.00”

Authorization	Vector

Matched!

Application	Examples

23

Evaluations
• No	traffic	can	go	out	without	having	proper	user	interaction
• All	transactions	sent	from	malware	was	blocked
• Attacker	can	still	launch	denial	of	service	attack

• Fail-safe:	no	attack	traffic	can	go	out

• Negligible	overhead	on	interposing	user	input	and	network	
monitoring
• Adding	34ms	of	delay	on	click
• ~50ms	of	delay	on	webpage	load,	3%	overhead	on	bandwidth

24

M-Aegis:	Protecting	the	Confidentiality	of						
User	Input/Output

25

What User Sees Application
UI

Security
Overlay

The	Status	Quo:	Encryption	for	Messengers

26

Standalone	Solutions

• Protect	data	confidentiality
• Good	isolation	from	untrusted	entities

• Examples:
• PGP,	Pidgin,	TextSecure,	SafeSlinger,	FlyByNight,	etc.

• Problem:	
• Requires	open	protocol
• Do	not	preserve	user	experience

27

Browser	Plugins/Extensions

• Provides	transparent	integration	with	applications	of	interest

• Examples:
• Ghost	for	chat,	TrustSplit,	NOYB,	SafeButton,	etc.

• Problem:	Only	applicable	to	web	applications.
• How	about	native	apps	and	mobile	devices?

28

M-Aegis:	Design	Goals

• Targets	native	applications	and	mobile	devices
• Offer	good	security
• End-to-end	encryption,	and	strong	isolation	from	untrusted	entities

• Preserve	user	experience
• Transparent	interaction	with	existing	apps

• Does	not	require	protocol	reverse	engineering
• A	sufficiently	general-purpose	approach

• Out-of-scope:	Key	exchange
• We	assume	key	exchange	can	be	done	by	other	means	(out-of-band).

29

Threat	Model

• Untrusted	parties:
• Service	providers
• Client-side	apps
• Middle	boxes	between	a	service	provider	and	the	client-side	app

• Trusted	components:
• Hardware,	OS
• Soft	keyboard
• Components	of	M-Aegis

30

M-Aegis	Architecture

• Layer	7.5

31

What User Sees Application
UI

Security
Overlay

M-Aegis	Architecture

• UI	Automation	Manager	(UIAM)
• Gives	M-Aegis	the	context	of	the	screen
• Provides	information	to	correctly	render	mimic	GUIs	on	L-7.5
• Relays	user	touch	to	the	underlying	app

32

M-Aegis	Architecture

• Per-Target	Client	App	(TCA)	Logic
• Processes	UI	tree	to	determine	a	TCA’s	current	UI	state
• Draw	overlay	for	en/decryption

• Editbox for	message,	etc.
• ‘Send’	button
• Display	decrypted	string	for	an	encrypted	message

33What User Sees Application
UI

Security
Overlay

M-Aegis	Architecture

• Searchable	Encryption	Scheme
• Easily-Deployable	Efficiently-Searchable	Symmetric	Encryption	Scheme	
(EDESE)
• Main	idea	– tag	the	encrypted	text
• Utilize	bloom	filter	(BF)	to	“collect”	keywords.

• Problem:	email	providers	don’t	support	BF	tests.
• Solution:	cleverly	encode	BF	in	such	a	way	that	it	is	searchable	by	simple	string	matching.

34

M-Aegis	WhatsApp	Workflow

• 1.	Do	key	exchange	with	a	friend
• 2.	On	entering	the	messaging	UI,	
TCA	detects	recipient	information
• Retrieve	the	correct	key	to	use

• 3.	TCA	will	detect	encrypted	
messages,	and	decrypt	them	then	
display	on	the	overlay
• 4.	TCA	will	overlay	editbox and	
send	button	and	send	encrypted	
message	on	clicking	the	button

35

What User Sees Application
UI

Security
Overlay

M-Aegis	Gmail	Preview

36

Performance	Evaluations

• Experimental	Setup:
• Stock	Android	phone	(LG	Nexus	4)

• Android	4.4.2	(Kit	Kat,	API	Level	19)

37

• Preview	Encrypted	Email:
• 76	ms to	render	plaintext	on	L-7.5
• Well	within	expected	response	time	(50	– 150	ms)

• Composing	and	Sending	Encrypted	Email:
• Used	Enron	Email	Dataset
• With	longest	email:

• 953	words,	of	which	362	are	unique
• 205	ms to	encrypt,	build	the	search	index,	and	encode

Limitations

• Social	engineering	attacks	(phishing)
• Only	handles	text-based	apps
• TCA-logic	update	is	required	if	the	app	updated	the	UI

38

A11y	Attacks:	On	the	Importance	of	checking
the	Authenticity	of	User	I/O

39

App

App
Ouptut

Input
Handler

OS

Traditional	User	I/O	Paths	in	OS

40

App

App
Ouptut

Input
Handler

Regular
Input	DevicesScreen	

Output

OS

New	User	I/O	Devices	in	OS	–
Accessibility	(a11y)
• Voice	commander
• Receives	user	input	from	microphone

• Screen	reader
• Send	UI	output	to	a11y	system	as	well	as	output	display

• On-screen	keyboard
• Generates	key	clicks	by	software

• etc.

41

A11y	Added	New	I/O	Paths	to	OS

42

Process
Output

Assistive	Technology

OS

App

Process
Input

App
Ouptut

Input
Handler

A11y
Library

Alt.	input	through	a11y

Regular
Input	DevicesScreen	

Output

Original	I/O	path

A11y	Input
(Voice)

Click
Continue!

A	Malware	Can	Attack	A11y

43

Process
Output

Assistive	Technology

OS

App

Process
Input

App
Ouptut

Input
Handler

A11y
Library

Alt.	input	through	a11y

Regular
Input	DevicesScreen	

Output

Original	I/O	path

A11y	Input
(Voice)

Click
Continue!

Play	audio:	click	continue

A	Malware	Can	Directly	Send	Command

44

Process
Output

Assistive	Technology

OS

App

Process
Input

App
Ouptut

Input
Handler

A11y
Library

Alt.	input	through	a11y

Regular
Input	DevicesScreen	

Output

Original	I/O	path

A11y	Input
(Voice)

Click
Continue!

Security	Implications	of	A11y

• Creates	new	I/O	Paths
• A11y	allows	a	program	to	send	an	input	event	to	the	application
• A11y	allows	a	program	to	read	an	output	of	the	other	applications

45

A	(malicious)	program	can	pretend	as	a	user
if	systems	miss security	checks	on	a11y	inputs

Security	Analysis	for	A11y

• Objective
• Check	OSes	if	they	are	secure	under	a11y	attacks	through	new	I/O	path

• Method
• Test	security	checks	from	the	component
• At	assistive	technology	level	(e.g.,	voice	commander)
• At	OS	level
• At	App	level

46

At	Assistive	Technology	(AT)	Level

47

Search
Twitter!

Authenticate	the	input
Is	the	voice	from	real	human?

If	not,	machine can	access	it!
Is	the	voice	matched	with	registered	user?

If	not,	any	other	human	user	can	access	it!

Process
Output

Assistive	Technology

OS

App

Process
Input

App
Ouptut

Input
Handler

A11y
Library

A11y	Input
(Voice)

Attacks	on	Voice	Commander

48

At	OS	Level

49

Access	control	is	required
Assistive	technology	allowed	to	access	a11y?

If	not,	any	program	(possibly	malware)	can	access	it!

Process
Output

Assistive	Technology

OS

App

Process
Input

App
Ouptut

Input
Handler

A11y
Library

A11y	Input
(Voice)

At	Application	Level

50

Distinguish	User	input	from	A11y	Input
Do	not	allow	to	perform	security	sensitive	UI!

Process
Output

Assistive	Technology

OS

App

Process
Input

App
Ouptut

Input
Handler

A11y
Library

A11y	Input
(Voice)

Permission	Views	in	iOS

51

A	malicious	app	can	click	this!

A11y	Output	Have	a	Conflict	with	System	
Features
• Visual	feedback	as	accessibility
• No	tactile	feedback	in	touch-screen devices
• To	reduce	typo,	OS	provides	visual	feedback
• Assumes	only	user	can	see	it
• Existing	feature	breaks	its	security

• Screenshot!
• iOS6:	Private	API	allows	screenshot
• Windows:	no	restriction	at	all
• Android:	screen	recording	permission

52

Attacks	on	Missed	Checkpoints

• We	found	12	new	vulnerable	points
• Windows	(3)

• 2	Privilege	escalation,	1	password	leak
• Linux	(2)

• Bypassing	process	boundary,	password	leak
• iOS (4)

• Bypassing	sandbox	and	authentication
• Privilege	escalation,	Password	leak

• Android	(3)
• Bypassing	sandbox	and	authentication
• password	leak

53

No	Authentication	for	Alternative	Input

• Any	user,	or	a	program	can	send	voice	to	Siri

• Simple	authentication	is	not	enough
• Liveness	check
• Challenge-response

• Vendors	cannot	ignore	practical	issues
• Computational	power
• Power	consumption
• etc.

54

Weak	Access	Control	on	A11y	Libraries

• Windows:	None
• Ubuntu:	None
• OS	X	:	None
• iOS	6	:	None
• Android: User	settings

55

Compatibility	Makes	the	Confusion

56

User	
Input

A11y	
InputEvent	Layer

UI	Internals performClick()

Application

Recommendations	for	A11y

• Apply	access	control	on	a11y	library
• Provide	mechanism	to	distinguish	a11y	I/O	from	the	real	I/O	requests
• For	the	security	sensitive	UIs,	get	input	with	proper	authentication.

57

Bringing	Assurance	of	User	I/O in	Intel	SGX

58

Motivation & Problem

• Intel	SGX
• Provides	a	trusted	execution	environment	only	with	hardware	TCB
• Security	of	an	enclave	is	guaranteed	even	under	the	untrusted	OS

• Challenges:	SGX	does	not	have	any	secure	user	I/O	path
• All	I/O	event	must	be	handled	by	the	untrusted	OS
• Most	of	existing	works	protect	I/O	through	encryption

• Haven,	VC3,	Ryoan,	SGX-TOR,	etc.
• SGX-IO	[CODASPY	‘17]

• Requires	a	trusted	hypervisor

59

SGX-USB	Overview

• Goal
• Establish	a	trusted	channel	between	a	USB	port	and	an	enclave	program	to	
securely	support	the	USB	device	I/O	in	an	enclave

• Place	a	trusted	hardware	at	the	USB	port	(USB	Proxy	Device)
• Authenticates	with	an	enclave	(remote	attestation)
• Delivers	USB	packet	through	the	secure	communication	channel

• Enclave	program
• Interprets	USB	packets	(driver)
• Processes	I/O	at	the	user-level

60

Threat	Model

• Trust
• The	processor
• The	application	that	runs	in	an	enclave
• The	remote	attestation	infrastructure
• Building	blocks	for	USB	proxy	device
• Two	public	keys	– from	Intel	and	from	Service	Provider

• Do	not	trust
• Do	not	trust	OS	and	other	applications

• Attackers	do	not	have	physical	access	to	the	devices

61

Architecture

62

App Enclave

USB	Proxy	Device

OS
Ethernet

Protected by TLS
Trusted Path in SGX-USB

Remote	Attestation
Service	Provider	

Intel Attestation
Service

Trusted component
Untrusted component

Encryption
Engine

Attestation
Engine

USB	Controller

OCALL	Layer

Device
Driver

Attestation
Engine

Secure	
Application

Encryption
Engine

Remote	Server

Enclave
Driver

Attest.

App

Encryption

Remote	Attestation	Process

63

USB	Proxy
Intel	Attestation

Service
Remote	Attestation

Service	Provider	(RASP)Enclave
1. User initiates SGX-USB

2. Enclave sends msg0, msg1, and g_a

3. SP sends msg2, sigRL, and g_b

4. Enclave sends msg3 (Quote)

req SigRL
get SigRL

req Sign Quote

get Signed Quote5. SP sends signed quote and
 verifiers (encrypted with g_a_b)

6. Enclave sends signed quote (g_a)
Signed Quote (g_a)

7. Send g_c and
 verifier (g_a_c)

8. Enclave sends verifier
 (encrypted with g_a_c)

RA END

Service
Provider

Intel
IAS Server

Client
Enclave

USB Forward
Device

1. User initiates SGX-USB

2. Enclave sends msg0, msg1, and g_a

3. SP sends msg2, sigRL, and g_b

4. Enclave sends msg3 (Quote)

req SigRL
get SigRL

req Sign Quote

get Signed Quote5. SP sends signed quote and
 verifiers (encrypted with g_a_b)

6. Enclave sends signed quote (g_a)
Signed Quote (g_a)

7. Send g_c and
 verifier (g_a_c)

8. Enclave sends verifier
 (encrypted with g_a_c)

RA END

Service
Provider

Intel
IAS Server

Client
Enclave

USB Forward
Device

1.	Init process 2.	Shares	g_A

3.	Shares	g_B (signed	by	RASP)

1. User initiates SGX-USB

2. Enclave sends msg0, msg1, and g_a

3. SP sends msg2, sigRL, and g_b

4. Enclave sends msg3 (Quote)

req SigRL
get SigRL

req Sign Quote

get Signed Quote5. SP sends signed quote and
 verifiers (encrypted with g_a_b)

6. Enclave sends signed quote (g_a)
Signed Quote (g_a)

7. Send g_c and
 verifier (g_a_c)

8. Enclave sends verifier
 (encrypted with g_a_c)

RA END

Service
Provider

Intel
IAS Server

Client
Enclave

USB Forward
Device

Quoting
Enclave

4.	Send	quote	that	contains	g_A and	g_B 4-1.	Quote	Sign	REQ

4-2.	Signed	Quote

5.	Send	signed	quote,	encrypted	with	g_A_B
6.	Send	signed	quote	(RASP	&	IAS)6-1

Ver.	Sign
get	g_A 7.	Send	g_C with	signature 7-1	verify	signature	of	g_C &	its	public	key

(signed	by	RASP)

4-3.	Sign	Quote
(by	RASP)

8.	Use	g_A_C for	communication

A	User’s	Workflow

• If	user	wants	to	communicate	with	AuthMgr,	then
• Initiates	RA	process
• The	enclave	authenticates	with	the	RASP
• USB	Proxy	Device	authenticates	with	the	enclave	(shared	g_A_C)
• Display	authentication	information

• After	user	allows	opening	the	channel,	then
• Enclave	asks	user	a	credential	(e.g.,	password,	OTP	Token,	etc.)

• Both	user	and	enclave	have	authenticated

64

Use	Cases

• Password	manager	&	2-factor	authentication
• User	types	passwords,	and	it	only	delivered	to	an	enclave	program
• The	program	in	enclave	gets	cookie	and	delivers	the	cookie	to	the	application

• Secure	video	chat
• Camera,	microphone,	display,	speaker,	etc.

65

EnclaveUSB	
Proxy Eth Eth

Enclave USB	
Proxy

Protected by Enclave Attestation
Protected by SGX-USB

Trusted component
Untrusted component

User	device	#1 User	device	#2

The Internet

Implementation

• Prototype	of	SGX-USB
• AuthMgr:	get	password	input	from	a	keyboard
• Raspberry	Pi	3	for	USB	Proxy	Device
• Implemented	USB	HID	driver	for	keyboard	in	enclave
• The	RASP	server

• ~	4700	lines	of	C++	code

66

Evaluations
• Throughput

67

• Latency

Discussions

• General	I/O	support
• All	USB	devices.	Possibly	support	devices	through	RDMA

• Feasibility	of	hardware	implementation
• Required	logics:	USB	Host,	Networking,	and	Crypto	(AES	&	ECHDE)
• Small	firmware	can	drive	the	logics

• Availability
• Inherent	limitation	of	Intel	SGX

68

Conclusion

• Building	Trust	in	the	User	I/O	in	Computer	Systems
• Integrity

• Gyrus:	authorizing	outgoing	network	traffic	using	user	input	data
• Confidentiality

• M-aegis:	provide	end-to-end	encryption	of	user	input/output	by	implementing	
encryption	layer	on	top	of	the	UI	layer

• Authenticity
• A11y	attack:	pointed	out	security	problems	caused	by	missing	checks	for	the	source	
of	user	input	and	the	destination	of	system	output

• Assurance
• SGX-USB:	establishing	a	secure	channel	between	a	USB	device	and	an	enclave	to	
provide	integrity,	confidentiality,	and	authenticity	of	user	input

69

