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Problem	Statement

• User	I/O	is	important
• Input	controls	system	/	output	contains	sensitive	data
• User	input/output	makes	security	decision

• Many	attack	points	on	the	systems
• Neither	isolated	nor	protected
• Attackers	modify	/	inject	/	eavesdrop	I/O	data
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Thesis	Scope

• Building	trusted	user	I/O	path	in	computer	systems
• Do	not	let	attacker	intervene	in	the	I/O	path

• Approaches
• Analyze	systems’	user	I/O	paths	and	threats	on	them
• Build	security	mechanisms	to	block	attack	pathways	by	guaranteeing:

• Integrity
• Confidentiality
• Authenticity
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Thesis	Topics

• Integrity	of	User	Input
• Gyrus	– authorizing	network	traffic	output	using	user	input	information

• Confidentiality	of	User	I/O
• M-aegis	– providing	end-to-end	encryption	of	user	I/O	in	messaging	apps

• Authenticity	of	User	I/O
• A11y	attacks	– presenting	attacks	caused	by	missing	authenticity	check

• Assurance	of	User	I/O
• SGX-USB	– establishing	a	secure	USB	I/O	channel	in	Intel	SGX
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Gyrus:	Protecting	the	Integrity	of	User	Input
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Yeongjin
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Processing…

Send	$1.00 to
Yeongjin



Motivation

• User	controls	system	by	supplying	input

• Think	a	computer	as	a	function:
• On	user’s	input,	there	will	be	an	output

• Can	we	make	a	system	that	only	generates	a	“correct”	output	that	
correspond	to	the	input?
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Matching	Network	Output	to	User	Input
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Can	we	use	utilize	user	inputs	as	basis	for
a	correct	behavior	to	block	attacks?

E.g.,	only	allow	the	traffic	that	matches	with	user	input

• User	types	”send	$1.00	to	Yeongjin”
• Expected	network	output:	send	$1.00 to	Yeongjin

• A	malware	in	the	system	can	alter	the	value	of	network	output
• Malicious	network	output:	send	$1000.00 to	Bob

• But,	user	input	has	the	correct	values Send	$1.00 to	Yeongjin



Related	Work

• Use	Timing	Information	for	User	Intent	Detection
• BINDER	[Cui	et	al.,	ACSAC	‘05]
• Not-A-Bot	[Gummadi et	al.,	NSDI	‘09]

• Method
• Monitor	physical	keystroke/mouse	clicks
• A	network	packet	sent	within	a	short-time	after	user	action	is	user	intended

• Tnetwork – Tinput <	Tthreshold
• E.g.,	packet	sent	500ms	after	user’s	action
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Related	Work

• Use	UI	Widget	for	User	Intent	Detection
• User-driven	Access	Control	[Roesner et	al.,	Oakland	’12]

• Bind	permissions	with	UI	widget
• Only	grant	permission	to	resource	if	the	user	clicks	a	widget
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Use	On-screen	Text	as	User’s	Intention

• New	security	policy:	What	You	See	is	What	You	Send	(WYSIWYS)
• Assume	on-screen	text	is	user-intended	input
• Only	allow	outgoing	traffic	that	matches	to	on-screen	text

Send	Yeongjin,	$1.00

Send	Bob,	$1000.00
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Examples

• We	can	infer	expected	network	output	from	on-screen	text
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User	Input Network	Output



Cases	of	WYSIWYS

• Internet	Messenger
• Messaging,	e-mail,	etc.

• Submitting	text-forms
• Online	banking,	online	social	network	(facebook),	etc.

• Not	WYSIWYS
• Uploading	files
• Encrypted	traffic	->	Man-in-the-middle	proxy	can	handle	standard	
encryption(TLS)
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Threat	Model

• Not	trusted
• OS	and	all	lower	privileged	programs

• Trusted
• Virtual	machine	monitor	and	programs	in	dom0
• Input	devices
• Display	device

• No	physical	access	to	the	machine
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Design

• Capturing	User-intended	Input
• What	you	see

• Monitoring	Network	Traffic
• What	you	send

• Protecting	Security	Monitor
• A	secure	way	of	matching	what	you	see	and	what	you	send
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Read	On-screen	Text	from	UI	Elements

• UIAutomation
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Per-application	Signature
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Monitoring	Network	Traffic

• Deep	packet	inspection
• Redirect	network	traffic	into	a	proxy,	then	inspect	the	content

• Encrypted	traffic
• Use	man-in-the-middle	proxy	to	decrypt,	inspect,	then	encrypt	again

• Text	transformation
• We	can	apply	same	transformation	to	the	user	input
• E.g.,	”Hi	there”	->	Hi%20there
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Monitoring	Network	Traffic

• Use	database	to	store	user	interaction	data
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Send	$1.00 to	Yeongjin
Click!

Processing… Send	$1.00 to	Yeongjin

Store	(Paypal,	$1.00,	Yeongjin) Query	(Paypal,	$1.00,	Yeongjin)



Protecting	Security	Monitor

• Modern	malwares	have	the	highest	privilege	in	OS	(i.e.,	root)
• To	monitor	the	system,	we	need	more	higher	privilege
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User	VMSecurity	Monitor

Hypervisor

• Virtual	machine	isolation
• Hypervisor	isolates	security	monitor

• User	VM	cannot	attack	security	monitor

• Security	monitor	can	inspect	User	VM	
through	Hypervisor



Data	from	User	VM	is	not	Trustful

• UIAutomation data	from	User	VM
• Attackers	can	alter	the	data
• On	screen:	send	Yeongjin $1.00
• On	UI	Element:	send	Bob	$100.00
• The	system	will	catch	(Bob,	$100)	instead	of	(Yeongjin,	$1.00)
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Yeongjin
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Bob,	$100.00



Security	Overlay

20
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What	You	See	==	What	Monitor	Captured

• Receive	UI	data	from	untrusted	VM

• Re-draws	all	editboxes in	secure	domain
• Draw	at	the	exactly	same	location,	size,	etc.
• Update	text	on	each	change	(Autocomplete)

• User	will	only	see	the	data	at	the	overlay
• Make	sure	our	security	monitor	correctly	
capture	the	intended	text	
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Gyrus	Workflow	with	Paypal
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On	clicking	Continue,
Stores	e-mail	and	amount	

Guest	VM
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UI
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Authorization	Vector

Matched!



Application	Examples
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Evaluations
• No	traffic	can	go	out	without	having	proper	user	interaction
• All	transactions	sent	from	malware	was	blocked
• Attacker	can	still	launch	denial	of	service	attack

• Fail-safe:	no	attack	traffic	can	go	out

• Negligible	overhead	on	interposing	user	input	and	network	
monitoring
• Adding	34ms	of	delay	on	click
• ~50ms	of	delay	on	webpage	load,	3%	overhead	on	bandwidth
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M-Aegis:	Protecting	the	Confidentiality	of						
User	Input/Output
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The	Status	Quo:	Encryption	for	Messengers
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Standalone	Solutions

• Protect	data	confidentiality
• Good	isolation	from	untrusted	entities

• Examples:
• PGP,	Pidgin,	TextSecure,	SafeSlinger,	FlyByNight,	etc.

• Problem:	
• Requires	open	protocol
• Do	not	preserve	user	experience
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Browser	Plugins/Extensions

• Provides	transparent	integration	with	applications	of	interest

• Examples:
• Ghost	for	chat,	TrustSplit,	NOYB,	SafeButton,	etc.

• Problem:	Only	applicable	to	web	applications.
• How	about	native	apps	and	mobile	devices?
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M-Aegis:	Design	Goals

• Targets	native	applications	and	mobile	devices
• Offer	good	security
• End-to-end	encryption,	and	strong	isolation	from	untrusted	entities

• Preserve	user	experience
• Transparent	interaction	with	existing	apps

• Does	not	require	protocol	reverse	engineering
• A	sufficiently	general-purpose	approach

• Out-of-scope:	Key	exchange
• We	assume	key	exchange	can	be	done	by	other	means	(out-of-band).
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Threat	Model

• Untrusted	parties:
• Service	providers
• Client-side	apps
• Middle	boxes	between	a	service	provider	and	the	client-side	app

• Trusted	components:
• Hardware,	OS
• Soft	keyboard
• Components	of	M-Aegis
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M-Aegis	Architecture

• Layer	7.5
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M-Aegis	Architecture

• UI	Automation	Manager	(UIAM)
• Gives	M-Aegis	the	context	of	the	screen
• Provides	information	to	correctly	render	mimic	GUIs	on	L-7.5
• Relays	user	touch	to	the	underlying	app
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M-Aegis	Architecture

• Per-Target	Client	App	(TCA)	Logic
• Processes	UI	tree	to	determine	a	TCA’s	current	UI	state
• Draw	overlay	for	en/decryption

• Editbox for	message,	etc.
• ‘Send’	button
• Display	decrypted	string	for	an	encrypted	message

33What User Sees Application 
UI 

Security 
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M-Aegis	Architecture

• Searchable	Encryption	Scheme
• Easily-Deployable	Efficiently-Searchable	Symmetric	Encryption	Scheme	
(EDESE)
• Main	idea	– tag	the	encrypted	text
• Utilize	bloom	filter	(BF)	to	“collect”	keywords.

• Problem:	email	providers	don’t	support	BF	tests.
• Solution:	cleverly	encode	BF	in	such	a	way	that	it	is	searchable	by	simple	string	matching.

34



M-Aegis	WhatsApp	Workflow

• 1.	Do	key	exchange	with	a	friend
• 2.	On	entering	the	messaging	UI,	
TCA	detects	recipient	information
• Retrieve	the	correct	key	to	use

• 3.	TCA	will	detect	encrypted	
messages,	and	decrypt	them	then	
display	on	the	overlay
• 4.	TCA	will	overlay	editbox and	
send	button	and	send	encrypted	
message	on	clicking	the	button
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M-Aegis	Gmail	Preview
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Performance	Evaluations

• Experimental	Setup:
• Stock	Android	phone	(LG	Nexus	4)

• Android	4.4.2	(Kit	Kat,	API	Level	19)
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• Preview	Encrypted	Email:
• 76	ms to	render	plaintext	on	L-7.5
• Well	within	expected	response	time	(50	– 150	ms)

• Composing	and	Sending	Encrypted	Email:
• Used	Enron	Email	Dataset
• With	longest	email:

• 953	words,	of	which	362	are	unique
• 205	ms to	encrypt,	build	the	search	index,	and	encode



Limitations

• Social	engineering	attacks	(phishing)
• Only	handles	text-based	apps
• TCA-logic	update	is	required	if	the	app	updated	the	UI
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A11y	Attacks:	On	the	Importance	of	checking
the	Authenticity	of	User	I/O
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Traditional	User	I/O	Paths	in	OS
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New	User	I/O	Devices	in	OS	–
Accessibility	(a11y)
• Voice	commander
• Receives	user	input	from	microphone

• Screen	reader
• Send	UI	output	to	a11y	system	as	well	as	output	display

• On-screen	keyboard
• Generates	key	clicks	by	software

• etc.
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A11y	Added	New	I/O	Paths	to	OS
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A	Malware	Can	Attack	A11y
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A	Malware	Can	Directly	Send	Command
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Security	Implications	of	A11y

• Creates	new	I/O	Paths
• A11y	allows	a	program	to	send	an	input	event	to	the	application
• A11y	allows	a	program	to	read	an	output	of	the	other	applications
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A	(malicious)	program	can	pretend	as	a	user
if	systems	miss security	checks	on	a11y	inputs



Security	Analysis	for	A11y

• Objective
• Check	OSes	if	they	are	secure	under	a11y	attacks	through	new	I/O	path

• Method
• Test	security	checks	from	the	component
• At	assistive	technology	level	(e.g.,	voice	commander)
• At	OS	level
• At	App	level
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At	Assistive	Technology	(AT)	Level
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Attacks	on	Voice	Commander
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At	OS	Level

49

Access	control	is	required
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At	Application	Level
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Distinguish	User	input	from	A11y	Input
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Permission	Views	in	iOS
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A	malicious	app	can	click	this!



A11y	Output	Have	a	Conflict	with	System	
Features
• Visual	feedback	as	accessibility
• No	tactile	feedback	in	touch-screen devices
• To	reduce	typo,	OS	provides	visual	feedback
• Assumes	only	user	can	see	it
• Existing	feature	breaks	its	security

• Screenshot!
• iOS6:	Private	API	allows	screenshot
• Windows:	no	restriction	at	all
• Android:	screen	recording	permission
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Attacks	on	Missed	Checkpoints

• We	found	12	new	vulnerable	points
• Windows	(3)

• 2	Privilege	escalation,	1	password	leak
• Linux	(2)

• Bypassing	process	boundary,	password	leak
• iOS (4)

• Bypassing	sandbox	and	authentication
• Privilege	escalation,	Password	leak

• Android	(3)
• Bypassing	sandbox	and	authentication
• password	leak
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No	Authentication	for	Alternative	Input

• Any	user,	or	a	program	can	send	voice	to	Siri

• Simple	authentication	is	not	enough
• Liveness	check
• Challenge-response

• Vendors	cannot	ignore	practical	issues
• Computational	power
• Power	consumption
• etc.
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Weak	Access	Control	on	A11y	Libraries

• Windows:	None
• Ubuntu:	None
• OS	X	:	None
• iOS	6	:	None
• Android: User	settings
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Compatibility	Makes	the	Confusion
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Recommendations	for	A11y

• Apply	access	control	on	a11y	library
• Provide	mechanism	to	distinguish	a11y	I/O	from	the	real	I/O	requests
• For	the	security	sensitive	UIs,	get	input	with	proper	authentication.
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Bringing	Assurance	of	User	I/O in	Intel	SGX
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Motivation & Problem

• Intel	SGX
• Provides	a	trusted	execution	environment	only	with	hardware	TCB
• Security	of	an	enclave	is	guaranteed	even	under	the	untrusted	OS

• Challenges:	SGX	does	not	have	any	secure	user	I/O	path
• All	I/O	event	must	be	handled	by	the	untrusted	OS
• Most	of	existing	works	protect	I/O	through	encryption

• Haven,	VC3,	Ryoan,	SGX-TOR,	etc.
• SGX-IO	[CODASPY	‘17]

• Requires	a	trusted	hypervisor
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SGX-USB	Overview

• Goal
• Establish	a	trusted	channel	between	a	USB	port	and	an	enclave	program	to	
securely	support	the	USB	device	I/O	in	an	enclave

• Place	a	trusted	hardware	at	the	USB	port	(USB	Proxy	Device)
• Authenticates	with	an	enclave	(remote	attestation)
• Delivers	USB	packet	through	the	secure	communication	channel

• Enclave	program
• Interprets	USB	packets	(driver)
• Processes	I/O	at	the	user-level
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Threat	Model

• Trust
• The	processor
• The	application	that	runs	in	an	enclave
• The	remote	attestation	infrastructure
• Building	blocks	for	USB	proxy	device
• Two	public	keys	– from	Intel	and	from	Service	Provider

• Do	not	trust
• Do	not	trust	OS	and	other	applications

• Attackers	do	not	have	physical	access	to	the	devices
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Architecture
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Remote	Attestation	Process
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A	User’s	Workflow

• If	user	wants	to	communicate	with	AuthMgr,	then
• Initiates	RA	process
• The	enclave	authenticates	with	the	RASP
• USB	Proxy	Device	authenticates	with	the	enclave	(shared	g_A_C)
• Display	authentication	information

• After	user	allows	opening	the	channel,	then
• Enclave	asks	user	a	credential	(e.g.,	password,	OTP	Token,	etc.)

• Both	user	and	enclave	have	authenticated
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Use	Cases

• Password	manager	&	2-factor	authentication
• User	types	passwords,	and	it	only	delivered	to	an	enclave	program
• The	program	in	enclave	gets	cookie	and	delivers	the	cookie	to	the	application

• Secure	video	chat
• Camera,	microphone,	display,	speaker,	etc.
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Implementation

• Prototype	of	SGX-USB
• AuthMgr:	get	password	input	from	a	keyboard
• Raspberry	Pi	3	for	USB	Proxy	Device
• Implemented	USB	HID	driver	for	keyboard	in	enclave
• The	RASP	server

• ~	4700	lines	of	C++	code
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Evaluations
• Throughput
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• Latency



Discussions

• General	I/O	support
• All	USB	devices.	Possibly	support	devices	through	RDMA

• Feasibility	of	hardware	implementation
• Required	logics:	USB	Host,	Networking,	and	Crypto	(AES	&	ECHDE)
• Small	firmware	can	drive	the	logics

• Availability
• Inherent	limitation	of	Intel	SGX
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Conclusion

• Building	Trust	in	the	User	I/O	in	Computer	Systems
• Integrity

• Gyrus:	authorizing	outgoing	network	traffic	using	user	input	data
• Confidentiality

• M-aegis:	provide	end-to-end	encryption	of	user	input/output	by	implementing	
encryption	layer	on	top	of	the	UI	layer

• Authenticity
• A11y	attack:	pointed	out	security	problems	caused	by	missing	checks	for	the	source	
of	user	input	and	the	destination	of	system	output

• Assurance
• SGX-USB:	establishing	a	secure	channel	between	a	USB	device	and	an	enclave	to	
provide	integrity,	confidentiality,	and	authenticity	of	user	input

69


