
SGX-Bomb: Locking Down the Processor via Rowhammer Attack
Yeongjin Jang

∗

Oregon State University

yeongjin.jang@oregonstate.edu

Jaehyuk Lee

KAIST

jaehyuk.lee@kaist.ac.kr

Sangho Lee

Georgia Institute of Technology

sangho@gatech.edu

Taesoo Kim

Georgia Institute of Technology

taesoo@gatech.edu

Abstract

Intel Software Guard Extensions (SGX) provides a strongly isolated

memory space, known as an enclave, for a user process, ensuring
confidentiality and integrity against software and hardware attacks.

Even the operating system and hypervisor cannot access the en-

clave because of the hardware-level isolation. Further, hardware

attacks are neither able to disclose plaintext data from the enclave

because its memory is always encrypted nor modify it because its

integrity is always verified using an integrity tree. When the proces-

sor detects any integrity violation, it locks itself to prevent further

damages; that is, a system reboot is necessary. The processor lock

seems a reasonable solution against such a powerful hardware at-

tacker; however, if a software attacker has a way to trigger integrity

violation, the lock could result in a severe denial-of-service (DoS)

attack.

In this paper, we introduce the SGX-Bomb attack that launches

the Rowhammer attack against enclave memory to trigger the pro-

cessor lockdown. The SGX-Bomb attack is simple yet alarming.

Inside an enclave, this attack first finds conflicting row addresses

at the same DRAM bank, and then repeatedly accesses them while

bypassing the cache. If arbitrary bit flips have occurred inside the

enclave because of the Rowhammer attack, any read attempts to

the enclave memory results in a failure of integrity check so that

the processor will be locked, and the system should be rebooted.

The SGX-Bomb attack is a serious threat especially to the public

cloud providers who are supposed to run unknown enclave pro-

grams received from their clients, which might shut down their

servers shared with other clients. We evaluate the effectiveness of

the SGX-Bomb attack in a real environment with DDR4 DRAM;

it takes 283 s to hang the entire system with the default DRAM

refresh rate, 64 ms.

CCS Concepts

• Security and privacy→ Denial-of-service attacks;

Keywords

Intel SGX; Rowhammer; DoS

∗
Work performed while the author was at the Georgia Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SysTEX’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5097-6/17/10. . . $15.00

https://doi.org/10.1145/3152701.3152709

ACM Reference Format:

Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:

Locking Down the Processor via Rowhammer Attack. In SysTEX’17: 2nd
Workshop on System Software for Trusted Execution , October 28, 2017, Shang-
hai, China. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/

3152701.3152709

1 Introduction

Trusted Execution Environment (TEE) is a promising approach to

enable secure computation, which allows a secure execution of a

program without relying on the underlying software stack such

as an operating system and a hypervisor. Intel Software Guard

Extensions (SGX) [18] is a commodity hardware-based TEE imple-

mentation designed to have a small trusted computing base (TCB);

it only requires trustworthy components inside the processor pack-

age such as cache memory and memory controller (MC). Therefore,

external hardware components such as the main memory (DRAM)

and peripherals do not need to be trusted.

Relying solely on its small TCB, SGX provides isolated memory

spaces called enclaves and aims to protect enclaves from two types of

attacks. First, it thwarts software attacks on enclaves by preventing

all the system software including operating system and hypervisors

from accessing the enclave content. More specifically, any software-

based unauthorized access to an enclave is prohibited by the page

miss handler (PMH) and is redirected to the abort page [11]. All

write attempts to the abort page are ignored, and all read attempts

to it just return all-one value (i.e., 0xffffffffffffffff for a 64-bit

integer). Consequently, software attackers have no way to access

enclaves.

Second, to prevent hardware-level data disclosure and forgery

attacks (e.g., cold boot, memory bus snooping, or malicious RAM),

Intel SGX adopts encryption and integrity checking schemes. The

memory encryption engine (MEE) inside the MC ensures that all

data transfers outside the processor package are encrypted (with

AES-128); that is, all enclaves’ data residing on the DRAM are

encrypted. Thus, hardware attackers cannot disclose the plaintext

data of enclaves without breaking the encryption scheme.

The MEE also maintains an integrity tree (a kind of a version

tree) for the entire enclave memory space to cope with data forgery

attacks. The integrity tree is updated whenever the MC transfers

enclave data outside the processor and checked whenever the MC

loads encrypted data residing on the DRAM into the processor.

When the MEE detects any data corruption (i.e., integrity is broken),

it will lock the MC and stop operating the entire processor to

avoid further damages to enclaves, which is called as a drop-and-
lock policy [15]. The MC and processor lock can be resolved only

through a cold reboot, making the MEE generate new keys.

Because the threat model of SGX assumes that a violation of

memory integrity can only be induced by hardware attacks only,

https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1145/3152701.3152709

SysTEX’17, October 28, 2017, Shanghai, China Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim

the drop-and-lock policy seems a legitimate solution against hard-

ware attackers who attempt to forge enclave content. However, we

challenge to that assumption: what will happen if a software-only
attack undermine the integrity of an enclave by triggering a vulnera-
bility in the memory hardware? If the drop-and-lock policy is still

applied to this case, the software-only attack can induce halting the
processor without having physical access to the DRAM.

To answer this question, we construct the SGX-Bomb attack that

launches the Rowhammer attack [21, 31], which can induce a phys-

ical disturbance error (i.e., bit flipping) in DRAM only by software,

against the enclaves. To be specific, the SGX-Bomb attack identifies

prerequisites of the Rowhammer attack in the enclave memory

space and then induces random bit flipping in the memory by re-

peatedly accessing conflicting row addresses inside the same DRAM

bank with cache flush and reload. By intentionally triggering the

drop-and-lock policy to block the execution of the processor, the

SGX-Bomb attack results in a system-wide denial-of-service (DoS);

that is, the system is not responding any of interrupts; therefore

the system should be rebooted to work properly.

We launched the SGX-Bomb attack to available hardware in the

market; that is, an Intel Core i7-6700K processor equipped with

Crucial 8GB DDR4 memory and installed as default settings. We

observed that the entire system hang can be triggered in 283 seconds

as the minimum.

The implication of the SGX-Bomb attack is alarming. From the

viewpoint of a server (e.g., the public cloud), the expected use case

of SGX is to securely run a program received from a remote client

without knowing its details. This implies that a remote client can

lock the server by launching the SGX-Bomb attack. Because sys-

tem software cannot monitor the enclave by design and the lock

is triggered at the hardware level, currently there is no defense

against this attack. More importantly, the cloud infrastructure for

SGX, in which its system availability is highly critical (i.e., directly

impacting its profit), is a more severe target of the SGX-Bomb at-

tack. It is because the processor lock will directly affect availability

and service level agreements (SLAs), and its recovery takes long

and consumes a lot of power, which is very costly in the cloud

computing.

2 Background

In this section, we will describe the hardware modification in Intel

Skylake processors for providing the integrity guarantee of SGX

that is exploited by the SGX-Bomb attack. The confidentiality pro-

tection in SGX and the corresponding hardware modifications are

not related to the SGX-Bomb attack. Thus they will not be illus-

trated in this paper. We direct the readers to [10, 11, 15, 19] for full

description.

Processor reserved memory. Intel SGX introduces a new mem-

ory region called Processor Reserved Memory (PRM). The PRM is a

physically continuous memory region located in the main memory

(DRAM), and the BIOS determines its range at the boot time. The

PRM region can be organized into two subregions: the Enclave Page

Cache (EPC) and the integrity tree [8, 15]. All the data and code

used by the enclave are stored in the EPC and the integrity tree

maintains the MAC tags of the EPC data. All these operations are

orchestrated by the memory encryption engine (MEE).

Memory encryption engine (MEE). The MEE is an extension of

the processor’s integrated memory controller (IMC), and the IMC

routes all read and write requests to all EPC pages in PRM to the

MEE [15]. Any access to EPC pages from non-enclave execution

will be strictly prohibited by the MEE (against software attacks),

and the MEE not only provides cryptographic protection over EPC

pages for confidentiality but also verifies the integrity of the pages

(against hardware attacks).

Integrity tree. The MEE provides data integrity and replay pro-

tection over EPC pages using the integrity tree [8, 15], which is an

enhanced version of the classical Merkle tree [25] (n-ary Merkle

tree with MAC using a hardware key). Tamper-resistance of the

tree is guaranteed by storing the root node in processor-internal

on-die SRAM. For every request, the MEE not only reads (writes)

the content of the EPC but also verifies (updates) its MAC with (to)

the integrity tree. Verifying MAC assures that the data read from

EPC is not corrupted since the last time it was written from the

processor to the DRAM.

Drop-and-lock policy. To prevent the forgery against EPC pages,

the MEE enforces drop-and-lock policy [15, 18]. When the MEE

detects any mismatch on the integrity tree, it immediately locks

the memory controller to prevent further transactions from being

serviced by the IMC. Eventually, this causes the system to hang and
reset must be required.

3 The SGX-Bomb Attack

The objective of the SGX-Bomb attack is to lock the processor

(i.e., launching a denial-of-service (DoS) attack) by intentionally

triggering the defense mechanism of the MEE of SGX for physical

attacks on memory integrity, through a software attack that utilizes

the Rowhammer attack [21].

Because SGX is supposed to protect itself from any physical attack

that tampers memory content in the enclave, the MEE follows

the drop-and-lock policy [15], which locks the processor if the

MEE observes any fault on the integrity check while loading and

decrypting an encrypted memory block. Only an explicit system

reboot can resolve the processor lock.

The drop-and-lock policy seems a valid solution against data

forgery when only a hardware attacker can corrupt the EPC region.

Unfortunately, we confirm that the Rowhammer attack can break

this assumption through the experiment. When an enclave process

launches the Rowhammer attack against its EPC pages, there is a

chance to flip arbitrary memory bits in the EPC pages. That is, a

software attack can corrupt data inside the EPC region.

The software-driven (or Rowhammer-driven) enclave data cor-

ruption also makes the processor halt because the MEE has no

way to distinguish the data corruption caused by software from

the data corruption caused by hardware. When an enclave process

accesses flipped EPC pages, the MEE will detect integrity violation

through discovering a mismatch of the MAC of the data with the

integrity tree and then lock the MC (and the entire processor). It

is because the memory modification through disturbance error is

not reflected in the integrity tree. Once the lock is triggered the

processor is neither able to execute instructions nor able to respond

to any interrupt requests. The only way to regain the execution of

the processor is to power down and up again.

This is a critical security problem because an unprivileged user-

level program (i.e., in ring 3) in an enclave can lock the processor,

leading to complete system down that makes the system software

completely lose control of the system.

3.1 Threat Model

The SGX-Bomb attack is based on the following assumptions:

(1) The target machine is equipped with an Intel processor that

supports SGX.

SGX-Bomb: Locking Down the Processor via Rowhammer Attack SysTEX’17, October 28, 2017, Shanghai, China

(2) The DRAM module of the target machine is vulnerable to the

Rowhammer attack.

(3) The attacker has a user-level execution environment (i.e., ring

3) on the system and can execute a program in an enclave.

(4) The attacker has no system privilege (i.e., ring 0) of the target

system and neither has a root-privilege account nor a kernel

exploit to get the system privilege.

(5) The attacker does not have any physical access to the target

machine.

We assume a realistic scenario of running a client application in

SGX. For example, both running a program in SGX under the cloud

environment and simply downloading a program for SGX over the

Internet and executing it will fall into this model.

3.2 Attack Design

In this section, we describe the SGX-Bomb attack in detail. In par-

ticular, we would like to demonstrate the lock-down of the running

processor by triggering a bit flipping on one of EPC pages, mak-

ing the data integrity check fail. To launch this attack, we use the

double-sided Rowhammer attack [31], which is known to be the

fastest way to induce a bit flipping.

In the following, we describe in detail each step for launching

the SGX-Bomb attack:

#1: Finding row addresses that reside in the same bank. The

first step of the SGX-Bomb attack is to find conflicting rows that

reside in the same bank in the EPC region because it is the require-

ment for launching double-sided Rowhammer attack. One way of

finding such addresses is a method proposed in DRAMA [26], which

reverse engineers the memory scramble function of the processor

to figure out the bank mapping of a physical address. However,

according to our threat model, we should not rely on this method

because an attacker has no permission to get the physical addresses

of the enclave memory space. Instead, we develop an exploit based

on the timing information as a side channel for finding virtual ad-

dresses that map to the same bank in the DRAM within an enclave,

as suggested in DRAMA [26] and the Google article [31].

Access of DRAM can be categorized in three ways in terms of

timing: 1) access the same row, 2) access rows in different banks,

and 3) access different rows (i.e., conflicting rows) in the same bank.

Because the timing of accessing conflicting rows is slower than

other two accesses, we can detect conflicting addresses only with

virtual addresses by measuring and comparing the access time.

Figure 1 shows how we can find conflicting rows by exploiting

access time as a side channel. We measure the timing of accessing

two addresses p1 and p2 without hitting the cache for multiple

times. Based on the timing categorization, we can easily observe

the three clusters of timing if we scan a small number of heap space

of an enclave that can accommodate the bank width of the memory

(<256 KB for the tested DRAM). Then, we set the average value of

the slowest and the median timing as the threshold (for accessing

1,000 times in i7-6700K, the threshold value was 600,000). After

getting the threshold value, we can find conflicting row addresses

by measuring the access time and comparing the timing with the

threshold for a fixed p1 and scanning p2 for enclave heap space.

#2: Finding interleaved row addresses. The double-sided Row-

hammer attack also requires an attacker to know two addresses in

the same bank but interleaved by one row in the middle. Although

we can find the row addresses in the same bank through step #1,

we need to figure out two rows that are interleaved by one row.

In other words, we need to have the addresses such that the first

1 // measure the timing of accessing two addresses p1 and p2
2 void enclave_access_row(uint64_t *p1, uint64_t *p2, uint64_t n_trial) {
3 // run for n_trial times (to amplify the delay)
4 while (n_trial-- > 0) {
5 // flush two addresses from the cache
6 asm volatile("clflushopt (%0)" :: "r"(p1) : "memory");
7 asm volatile("clflushopt (%0)" :: "r"(p2) : "memory");
8 asm volatile("mfence;");
9 // access two addresses
10 asm volatile("mov (%0), %%r10;" :: "r"(p1) : "memory");
11 asm volatile("mov (%0), %%r11;" :: "r"(p2) : "memory");
12 asm volatile("lfence;");
13 }
14 }
15 #define N_THRESHOLD (600000)
16 #define N_TIMES (1000)
17 // Runs outside of an enclave
18 bool check_addr_in_the_same_bank(uint64_t *p1, uint64_t *p2) {
19 // returns ~500000 if p1 and p2 are in the same row
20 // returns ~550000 if p1 and p2 are in different banks
21 // returns > 600000 if p1 and p2 are in different rows
22 // in the same bank
23 size_t start_time = rdtscp();
24 enclave_access_row(p1, p2, N_TIMES);
25 size_t end_time = rdtscp();
26 return((end_time - start_time) > N_THRESHOLD);
27 }

Figure 1: A code snippet for finding two different row addresses that

reside in the same bank. The function enclave_access_row() accesses
two addresses p1 and p2multiple times without hitting the cache (by

clflushopt). The access time will be slower than the other accesses

if p1 and p2 are located in different rows in the same bank. The func-

tion check_addr_in_same_bank()measures the access time of these ad-

dresses and detect conflicting addresses by a threshold value.

address points to ith row and the second address points to i+2th
row.

Because Intel SGX uses a fixed physical address range for the

entire EPC region as well as the current Linux SGX driver has a

simple virtual memory allocation algorithm, finding such inter-

leaved row addresses are easy. By sequentially scanning the virtual

address space of an enclave for finding conflicting rows, we can

find such physically interleaved rows. In particular, when we set a

sufficient (e.g., 16 MB) margin to the starting address for scanning

the heap space, the scanned addresses are mapped into a sequen-

tial physical address space in the EPC region. In this setting, the

conflicting rows that are found in sequence in the virtual address

space are also sequentially placed in the physical address space. In

consequence, if we observe three conflicting virtual addresses in

sequence, let say them as p1, p2, and p3, then all these addresses

are highly likely to be in sequence in the physical address space. So

p1 and p3 are the bank-conflicting row addresses with interleaving

only one row that p2 points to. This is because the current Linux

SGX driver sequentially allocates EPC pages when initializing an

enclave. Using this method, we can find the target addresses of the

double-sided Rowhammer attack.

#3: Triggering bit flipping. The last step of the SGX-Bomb attack

is launching the Rowhammer attack to the enclave address space.

After having two target row addresses, we apply the double-sided

Rowhammer attack by running the code shown in Figure 2. In the

code, the function dbl_sided_rowhammer() probes two interleaved

rows p1 and p2 for multiple times. After one round of hammering

is finished, the function chk_flip() will read the entire heap ad-

dresses in the enclave to check the occurrence of any bit-flipping

by the Rowhammer attack. If the routine observes any bit flips, the

MC and the entire processor will be locked.

To amplify the chance of hammering, we run this code with

multiple threads; because the processor that we tested has four

physical cores, we run the attack with four threads to maximize

the chance of bit flipping.

SysTEX’17, October 28, 2017, Shanghai, China Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim

1 uint64_t *ptr = ENCLAVE_HEAP_ADDRESS;
2 size_t mem_size = SIZE_OF_ENCLAVE_HEAP;
3

4 void chk_flip() {
5 for(uint64_t i=0ul; i<mem_size/sizeof(uint64_t); ++i) {
6 ptr[i]; // read memory
7 // MC will be locked up if any bit in the read block is flipped.
8 }
9 }
10 void dbl_sided_rowhammer(uint64_t *p1, uint64_t *p2, uint64_t n_reads) {
11 while(n_reads-- > 0) {
12 // read memory p1 and p2
13 asm volatile("mov (%0), %%r10;" :: "r"(p1) : "memory");
14 asm volatile("mov (%0), %%r11;" :: "r"(p2) : "memory");
15 // flush p1 and p2 from the cache
16 asm volatile("clflushopt (%0);" :: "r"(p1) : "memory");
17 asm volatile("clflushopt (%0);" :: "r"(p2) : "memory");
18 }
19 chk_flip();
20 }

Figure 2: A code snippet for launching the double-

sided Rowhammer attack in an enclave. The function

dbl_sided_rowhammer() hammers two addresses p1 and p2 for

multiple times. After one round of hammering is finished, the

function chk_flip() will read the entire heap addresses in the

enclave. The MC and entire processor will be locked if any bit flip

is observed during the execution of this routine.

Refresh rate (ms) 64 (default) 128 (2×) 256 (4×) 503 (max)

Min. elapsed time (s) 283 30 4 1

Table 1: The minimum time taken to see the system hang by the

SGX-Bomb attack by varying DRAM refresh rates. Because the

chance of bit flipping by theRowhammer attack increases as DRAM

refresh time increases by, the minimum time for observing system

lock is reduced for the longer refresh time.

4 Attack Evaluation

We implemented and launched a proof-of-concept of the SGX-Bomb

attack on a target system equipped with an Intel Core i7-6700K

processor and Crucial 8GB DDR4 memory. For the evaluation, we

measured the minimum required time taken to trigger the system

lock and analyzed the effect of the attack.

4.1 Attack Timing

Table 1 shows the minimum time taken to observe system hang

while launching the SGX-Bomb attack for various DRAM refresh

rates. The attack timing is not stable because the Rowhammer

attack is caused by physical characteristics of a DRAM module, and

the rate of bit flipping occurrence depending on the physical status.

Thus, we show only the minimum timing that we observed for the

successful attack to demonstrate its feasibility.

Normal DRAM refresh timing. For the normal DRAM refresh

rate, which is 64 ms and 7.8 µs per each row, the earliest time taken

for observing the system hang was 283 s.

AdjustedDRAMrefresh timing. To simulate a highly vulnerable

DRAM module, we adjusted the DRAM refresh rate. Reducing the

DRAM refresh rate made the SGX-Bomb attack more effective. For

doubling the refresh rate (128 ms), we observed the system lock

in around 30 s. For the slower refresh rates, 256 ms (four times

than normal) and 503 ms (the maximum rate on the processor), we

observed the system lock in 4 s and 1 s, respectively.

4.2 Validating Processor Lock

We validated the locking of the entire processor by sending requests

that the system supposed to give a response while launching the

attack. Such requests include:

(1) Typing keystrokes on the console (in ring 3),

(2) Connecting to a network service such as sshd (in ring 3, with

root privilege),

(3) Generating keyboard interrupts (CTRL+ALT+DEL or sysrq keys,

in the kernel, ring 0),

(4) Pressing the reset button (physical).

From (1) to (3), for both ring 3 and ring 0 request handlers, we

cannot observe any response from the system; that is, even for the

system software including kernel cannot recover from the hang

triggered by the SGX-Bomb attack. In the case of (4), we observed

a different behavior than normal when the processor is locked. On

our system, pressing the reset button on the system immediately

reboots the system starting from the BIOS screen. This is done by

the motherboard sending a signal to the reset pin of the processor,

and the processor will initiate reboot upon receiving the signal. In

contrast, when the processor lock is triggered, the system waits for

around five seconds then the system completely turns its power off

and turns it on again in order to initiate a cold reboot process. We

believe that the power down is caused by the motherboard because

the motherboard did not get any response for signaling on the reset

pin of the processor, implying that the reset signal does not work

at all while the processor is locked. Thus, the motherboard tries the

physical reboot process that powers off and on the entire system.

From this result, we think that the processor requires a complete

power down and power up to be recovered by the lock.

5 Discussions

In this section, we explain why the SGX-Bomb attack is a serious

security problem and describe potential software- and hardware-

based countermeasures against SGX-Bomb.

Implication of SGX-Bomb for the cloud provider. SGX-Bomb

is a serious threat to cloud providers because a system lock caused

by the attack requires an explicit system reboot for their server

shared by a number of customers. In particular, a system reboot is

a serious problem to cloud providers because some of the popular

cloud services, such as Memcached and Redis, require a warm-up

phase longer than one hour [12], and, obviously, a faster kexec-

based system reboot mechanism [20] cannot be applied when the

MC (and the processor) is locked.

More importantly, availability is an essential requirement of the

cloud service. For example, Amazon EC2 gives its customers service

credits when its service does not meet the guaranteed 99.95% of

monthly uptime [1]. Further, an unavailable cloud service would

affect other services as shown by a recent outage of Amazon Web

Services that resulted in taking down other services on the Internet

as a chain reaction [33]. To avoid such problems, the cloud providers

have to maintain many replicas, increasing their service costs.

Exploiting Rowhammer for SGX-Bomb is easier. The SGX-

Bomb attack is straightforward to perform in comparison with

other Rowhammer attacks because SGX-Bomb does not require a

sophisticated preparation phase for a successful attack. The only

requirement to halt the processor in the SGX-Bomb attack is to flip

any memory bits inside the entire EPC region; that is, the attack

surface is wide enough to contain a vulnerable memory cell (e.g., up

to 128 MB for SGX version 1). In contrast, the other Rowhammer at-

tacks are hard to launch due to their complex attack requirements.

For example, an attack that aims to flip specific bits controlling

privilege (e.g., making a page table entry writable by a user pro-

cess [31]) not only requires controlling of memory allocation to

place the target memory pages into vulnerable DRAM rows, but

also requires flipping a specific bit (or bits) for a reliable attack [34].

SGXmakes knownRowhammer detection schemes obsolete.

The strong confidentiality guarantees provided by Intel SGX make

SGX-Bomb: Locking Down the Processor via Rowhammer Attack SysTEX’17, October 28, 2017, Shanghai, China

the SGX-Bomb attack covert against static and dynamic analysis.

First, the system software has no way to statically inspect the

source code or binary that will be executed inside an enclave, when

it dynamically loads its (encrypted) binary [29]. A two-way sand-

box [17] that restricts instructions an enclave process can use (e.g.,

clflushopt) is a possible mitigation; however, the Rowhammer

attack is still possible without relying on such instructions [14].

Second, system software cannot dynamically analyze and profile

an enclave process because it is neither able to access the enclave

memory nor able to retrieve performance events of the enclave pro-

cess. The Rowhammer attack generates many cache misses because

it has to directly access the memory to trigger a fault. Inspired by

this characteristic, ANVIL [2] and a Linux kernel patch [9] profile

cache misses using performance monitoring units (PMUs) to detect

the Rowhammer attack. However, Intel SGX has a feature to do

not accumulate performance monitoring events directly associated

with an enclave for confidentiality, known as the anti side-channel

inference (ASCI) [19]. Because the ASCI hides the number of cache

misses generated by enclaves, both detection methods cannot detect

an enclave conducting the Rowhammer attack.

Additionally, we confirm that Intel SGX can hide other Rowham-

mer attacks as well.We observe that the ASCI hides the cachemisses

of an enclave even when it accessed normal, non-EPC pages. This

implies that SGX-based Rowhammer attacks against non-enclave

memory (e.g., page table entries) are hidden from the system soft-

ware, realizing covert Rowhammer attacks.

The root-cause is vulnerable DRAMs. The root-cause of the

SGX-Bomb attack is DRAMs that are vulnerable to the Rowhammer

attack and is not a design flaw of Intel SGX. Hence, the fundamental

solution to block the SGX-Bomb attack is using Rowhammer-free

DRAM or developing countermeasures to them. For instance, a

DRAM module that supports target-row refresh (TRR) [28] could

be an effective defense. In addition to TRR, Intel developed amethod

called pseudo-TRR (pTRR) [3] that works similar to TRR but does

not require drastic changes in DRAM in their recent processors.

However, both approaches require DRAMs to be compliant to them,

and vulnerable DRAM modules are still available on the market;

it is unclear whether future DRAM modules, which are becoming

dense and stacked, are free from the Rowhammer attack.

Is error-correcting code (ECC) memory effective?. The ECC

memory can mitigate the SGX-Bomb attack by mitigating the Row-

hammer attack, but it cannot be a solution. This is because a previ-

ous work [22] confirmed that attackers could flip more than one

bit in a memory block. Since the ECC memory can only correct

1-bit error and detect 2-bit error, the ECC memory cannot detect

nor prevent attacks that flip more than 3-bits in a single memory

block, which is totally possible by the Rowhammer attack. Even for

detecting 2-bit error, without having a new policy different than

drop-and-lock, the SGX-Bomb attack can still be possible.

Potential software-basedmitigation. Since processors support-

ing Intel SGX (i.e., all Skylake and Kaby Lake processors) and DRAM

modules vulnerable to the SGX-Bomb attack are already widely de-

ployed on the market, we highly demand software-based mitigation

against the SGX-Bomb attack to prevent any further damages.

To this end, we are considering two possiblemitigation approaches.

First, we plan to modify the Linux SGX driver to do not sequen-

tially allocate EPC pages in the physical address space or to prevent

allocations on weak cells in the DRAM. As explained in §3.2, the

SGX-Bomb attack can easily detect conflicting DRAM rows because

the current Linux SGX driver sequentially allocates EPC pages. Sim-

ilar to the approach taken in Brasser et al. [5], modifying the driver

to do shuffling/blocking during EPC page allocation phase make

detecting interleaved conflicting rows difficult.

Second, we plan to use uncore PMUs (e.g., cache box and IMC

PMUs) to detect whether the SGX-Bomb attack is being performed.

We confirm that the ASCI does not hide performance events ob-

servable by uncore PMUs, as mentioned by Costan et al. [11]. We

think that this is because differentiating and filtering enclave’s per-

formance events at the uncore PMUs is difficult to implement in

hardware. We plan to investigate all the performance events of

the SGX-Bomb attack that can be monitored by uncore PMUs to

implement a detection method.

Better defense schemes than just processor lockdown. To

avoid a serious DoS problem caused by possibly vulnerable DRAM,

the processor may require different policies to take when it detects

enclave data corruption, instead of the drop-and-lock policy. One

possible policy is disabling all further SGX operations when there

was any data corruption in an enclave. This policy also brings a DoS

problem, but, at least, not the entire system halts and non-enclave

processes work normally. Additionally, if the processor has a way

to detect which enclave process is performing the SGX-Bomb attack

(e.g., counting the number of cache misses each enclave generates)

or maintains individual integrity trees for different enclaves, the

processor can selectively remove the problematic enclave and let

the system software know about it. However, implementing such

features inside the processor would not only increase hardware

costs but also experience false positives.

6 Related Work

This section, we introduce existing Rowhammer attacks and several

countermeasures against them. We also introduce other attacks

against Intel SGX.

The Rowhammer attack. Kim et al. [21] found that a DRAM

disturbance error can be triggered by software repeatedly accessing

(or hammering) DRAM rows in the same bank, which results in

bit flipping in memory. The Google Project Zero team [31] turned

this observation into a real exploit by inducing a bit flip into a page

table entry (PTE), which allows an attacking process to manipulate

its page tables freely. Because of its tremendous influence, may

succeeding researches have been conducted. Gruss et al. [14] and

Bosman et al. [4] have shown that a remote entity can launch the

Rowhammer attack through JavaScript. Xiao et al. [36] and Razavi et

al. [27] have shown that the Rowhammer attack is possible in cross-

VM settings by attacking Xen paravirtual memory management

or exploiting memory deduplication, respectively. Further, van der

Veen et al. [34] have proposed a deterministic Rowhammer attack

against an ARM platform. ANVIL [2] and a Linux kernel patch [9]

use PMUs to check visible events of the Rowhammer attack such as

high LLC miss rate. However, because of the ASCI feature of Intel

SGX [19], such approaches cannot observe SGX-Bomb.

Attacks against Intel SGX. Researchers have considered possible

attacks against Intel SGX to know whether it is secure enough and

suggest improved security design for its future versions. Many side-

channels attacks exploiting page fault [7, 32, 37], cache timing [6,

13, 16, 30], and branch prediction [24] have been proposed to attack

SGX. Further, researchers have shown that it is possible to attack

enclaves with software vulnerabilities [23, 35]. Note that existing

attacks against Intel SGX focus on whether Intel SGX protects

the confidentiality of an enclave from attackers. To the best of

SysTEX’17, October 28, 2017, Shanghai, China Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim

our knowledge, SGX-Bomb is the first software-based attack to

compromise the integrity of an enclave.

7 Conclusion

Intel SGX is a promising technology to realize a secure comput-

ing environment with confidentiality and integrity. However, as

shown in this paper, its strong integrity guarantee could become a

double-edged sword if a software attacker intentionally triggers in-

tegrity violation through the Rowhammer attack in order to launch

a severe DoS attack. Although we believe that using Rowhammer-

free DRAM (if it exists) is the only complete solution against the

SGX-Bomb attack, the software-based mitigation approaches that

we are currently developing as well as the hardware design changes

that we suggested would practically mitigate the problem.

Acknowledgement. We thank the anonymous reviewers for their

helpful feedback. This research was supported, in part, by the NSF

award DGE-1500084, CNS-1563848, CNS-1704701 and CRI-1629851,

ONR under grant N000141512162, DARPA TC (No. DARPA FA8650-

15-C-7556), and XD3 programs (No. DARPA HR0011-16-C-0059),

ETRI IITP/KEIT[B0101-17-0644], NRF-2017R1A6A3A03002506, and

gifts from Facebook, Mozilla and Intel.

Responsible vulnerability disclosure. To resolve the newly dis-

covered security threat, we confidentially reported the SGX-Bomb

attack to Intel by sharing a preliminary version of this manuscript

in February 2017. The comment from Intel was that the cause of

the SGX-Bomb attack is vulnerable DRAMs. We hope that this pa-

per alarms the public regarding the risk and implication of the

rowhammer attack against SGX.

References

[1] Amazon. 2017. Amazon EC2 Service Level Agreement. (2017). https://aws.

amazon.com/ec2/sla/.

[2] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,

Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL: Software-Based

Protection Against Next-Generation Rowhammer Attacks. In Proceedings of the
21st ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Atlanta, GA.

[3] Kuljit Bains, John Halbert, Christopher Mozak, Theodore Schoenborn, and Zvika

Greenfield. 2015. Row Hammer Refresh Command. (Aug. 25 2015). US Patent

9,117,544.

[4] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. 2016. Dedup Est Machina: Memory

Deduplication as an Advanced Exploitation Vector. In Proceedings of the 37th
IEEE Symposium on Security and Privacy (Oakland). San Jose, CA.

[5] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-

Reza Sadeghi. 2017. CAn’t Touch This: Software-onlyMitigation against Rowham-

mer Attacks targeting Kernel Memory. In Proceedings of the 26th USENIX Security
Symposium (Security). Vancouver, BC, Canada.

[6] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache

Attacks Are Practical. In Proceedings of the 11th USENIX Workshop on Offensive
Technologies (WOOT). Vancouver, BC, Canada.

[7] Jo Van Bulck, Nico Weichbrodt, R. Kapitza, Frank Piessens, and Raoul Strackx.

2017. Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks

on Enclaved Execution. In Proceedings of the 26th USENIX Security Symposium
(Security). Vancouver, BC, Canada.

[8] S. Chhabra, U.R. Savagaonkar, M.A. Goldsmith, S.P. Johnson, R.M. Leslie-Hurd,

F.X. Mckeen, G. Neiger, R. MAKARAM, C.V. Rozas, A.L. Santoni, et al. 2016. Secure

memory repartitioning. (Aug. 3 2016). https://google.com/patents/EP3049992A1?

cl=no EP Patent App. EP20,140,849,831.

[9] Jonathan Corbet. 2016. Defending against Rowhammer in the kernel. (2016).

https://lwn.net/Articles/704920/.

[10] Victor Costan, Ilia Lebedev, Srinivas Devadas, et al. 2017. Secure Processors

Part I: Background, Taxonomy for Secure Enclaves and Intel SGX Architecture.

Foundations and Trends® in Electronic Design Automation 11, 1-2 (2017), 1–248.

[11] Victor Costan, Ilia Lebedev, Srinivas Devadas, et al. 2017. Secure Processors Part

II: Intel SGX security analysis and MIT Sanctum Architecture. Foundations and
Trends® in Electronic Design Automation 11, 3 (2017), 249–361.

[12] Aakash Goel, Bhuwan Chopra, Ciprian Gerea, Dhrúv Mátáni, Josh Metzler, Fahim

Ul Haq, and Janet Wiener. Fast database restarts at Facebook. In SIGMOD14.
[13] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.

Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on

Systems Security (EuroSec).
[14] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A

Remote Software-induced Fault Attack in JavaScript. In Proceedings of the 13th
Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA).

[15] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose

Processor. IACR Cryptology ePrint Archive 2016 (2016), 204.
[16] M. Hähnel, W. Cui, and M. Peinado. 2017. High-Resolution Side Channels for

Untrusted Operating Systems. In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC). Santa Clara, CA.

[17] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.

Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In

Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, GA.

[18] Intel. 2015. SGX Tutorial, ISCA 2015. http://sgxisca.weebly.com/. (June 2015).

[19] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual Com-

bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C and 3D. (Sept. 2016).

[20] Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee, Taesoo Kim, and Pavel

Emelyanov. 2016. Instant OS Updates via Userspace Checkpoint-and-Restart. In

Proceedings of the 2016 USENIX Annual Technical Conference (ATC). Denver, CO.
[21] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory

without accessing them: An experimental study of DRAM disturbance errors. In

Proceedings of the 41st ACM/IEEE International Symposium on Computer Architec-
ture (ISCA). Minneapolis, MN.

[22] M Lanteigne. 2016. How rowhammer could be used to exploit weaknesses in

computer hardware. (2016). http://www.thirdio.com/rowhammer.pdf.

[23] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho

Choi, Taesoo Kim,Marcus Peinado, and Brent B. Kang. 2017. Hacking in Darkness:

Return-oriented Programming against Secure Enclaves. In Proceedings of the 26th
USENIX Security Symposium (Security). Vancouver, BC, Canada.

[24] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-

cus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves

with Branch Shadowing. In Proceedings of the 26th USENIX Security Symposium
(Security). Vancouver, BC, Canada.

[25] Ralph C Merkle. 1987. A digital signature based on a conventional encryption

function. In Conference on the Theory and Application of Cryptographic Techniques.
Springer, 369–378.

[26] Peter Pessl, Daniel Gruss, Clementine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM addressing for cross-CPU attacks. In

Proceedings of the 25th USENIX Security Symposium (Security). Austin, TX.
[27] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and

Herbert Bos. 2016. Flip Feng Shui: Hammering a needle in the software stack. In

Proceedings of the 25th USENIX Security Symposium (Security). Austin, TX.
[28] Perry Willmann Remaklus Jr and Robert Michael Walker. 2007. Method and

system for providing independent bank refresh for volatile memories. (Feb. 27

2007). US Patent 7,184,350.

[29] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy

data analytics in the cloud using SGX. In Proceedings of the 36th IEEE Symposium
on Security and Privacy (Oakland). San Jose, CA.

[30] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. 2017. Malware

Guard Extension: Using SGX to Conceal Cache Attacks. In Proceedings of the 14th
Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA).

[31] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug

to gain kernel privileges. In Black Hat USA Briefings (Black Hat USA). Las Vegas,
NV.

[32] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.

2016. Preventing Your Faults From Telling Your Secrets. In Proceedings of the
11th ACM Symposium on Information, Computer and Communications Security
(ASIACCS). Xi’an, China.

[33] Chris Smith. 2017. Amazon finally explained what happened when it ac-

cidentally took down the internet. (2017). http://bgr.com/2017/03/02/

why-internet-isnt-working-amazon-aws-outage/.

[34] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémen-

tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.

2016. Drammer: Deterministic Rowhammer attacks on mobile platforms. In Pro-
ceedings of the 23rd ACM Conference on Computer and Communications Security
(CCS). Vienna, Austria.

[35] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-

Shock: Exploiting synchronisation bugs in Intel SGX enclaves. In Proceedings of
the 21th European Symposium on Research in Computer Security (ESORICS). Crete,
Greece.

[36] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and MR Teodorescu. 2016. One bit

flips, one cloud flops: Cross-VM row hammer attacks and privilege escalation. In

Proceedings of the 25th USENIX Security Symposium (Security). Austin, TX.
[37] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel

attacks: Deterministic side channels for untrusted operating systems. In Proceed-
ings of the 36th IEEE Symposium on Security and Privacy (Oakland). San Jose,

CA.

https://aws.amazon.com/ec2/sla/
https://aws.amazon.com/ec2/sla/
https://google.com/patents/EP3049992A1?cl=no
https://google.com/patents/EP3049992A1?cl=no
https://lwn.net/Articles/704920/
http://sgxisca.weebly.com/
http://www.thirdio.com/rowhammer.pdf
http://bgr.com/2017/03/02/why-internet-isnt-working-amazon-aws-outage/
http://bgr.com/2017/03/02/why-internet-isnt-working-amazon-aws-outage/

	Abstract
	1 Introduction
	2 Background
	3 The SGX-Bomb Attack
	3.1 Threat Model
	3.2 Attack Design

	4 Attack Evaluation
	4.1 Attack Timing
	4.2 Validating Processor Lock

	5 Discussions
	6 Related Work
	7 Conclusion
	References

