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Abstract
Most modern software attacks are rooted in memory corruption

vulnerabilities, which are capable of altering security-sensitive data
(e.g., function pointers) to unintended values. This paper introduces
a new security property, the Value Invariant Property (VIP), and
HYPERSPACE, our prototype that enforces VIP on security-sensitive
data. HYPERSPACE safeguards the integrity of “data values” instead
of enforcing control/data flow, allowing for low runtime over-
head, yet defeating critical attacks effectively. We implement four
representative security policies including Control Flow Integrity
(VIP-CFI), Code Pointer Integrity (VIP-CPI), Virtual function Table
protection (VIP-VTPtr), and heap metadata protection based on
HyPERSPACE. We evaluate HYyPERSPACE with SPEC CPU2006 bench-
marks and real-world applications (NGINX and PostgreSQL) and
test how HYPERSPACE defeats memory corruption-based attacks, in-
cluding three real-world exploits and six attacks that bypass existing
defenses (COOP, heap exploits, etc.). Our experimental evaluation
shows that HYPERSPACE successfully stops all these attacks with low
runtime overhead: 0.88% and 6.18% average performance overhead
for VIP-CFI and VIP-CPL, respectively, and overall approximately
13.18% memory overhead with VIP-CPI in SPEC CPU2006.
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1 Introduction

The foundation of most software stacks is written in unsafe lan-
guages such as C/C++. This jeopardizes not only the security of
programs written in those languages but also the security of pro-
grams written in modern type-safe languages, as the latter often
utilize libraries written in unsafe languages. This causes applica-
tions to be prone to memory corruption vulnerabilities.
Successful memory corruption attacks aim to modify the in-
tended value of security-sensitive data. For example, control-flow
hijacking attacks exploit memory corruption vulnerabilities to over-
write code pointers. In most cases, these targeted code pointers are
return addresses [4, 5, 67, 71], function pointers [9, 16, 24, 31], or
virtual function table pointers in C++ [64, 82]. Overwriting such val-
ues allows attackers to achieve arbitrary code execution. Similarly,
heap overflow attacks exploit memory corruption vulnerabilities
to overwrite heap metadata [3, 21, 22, 56, 69, 70, 81]. Tainting heap
metadata can mislead the memory allocator, allowing attackers to
either have arbitrary write or arbitrary code execution capabilities;
both are capabilities that can be considered critical security threats.

Memory-corruption Defense Landscape. In response, many
defenses have been proposed to thwart memory corruption-based
attacks. However, they suffer from high runtime overhead, or they
are imprecise and thus susceptible to attacks.

Full memory safety enforcement techniques [49, 65, 85] prevent
memory corruption attacks by enforcing spatial and temporal mem-
ory safety. However, these approaches fall short in practicality due
to high runtime performance and memory overhead. For example,
a state-of-the-art system BOGO [85] has 60% runtime overhead and
36% memory overhead.

Control-flow integrity (CFI) techniques [1, 6, 12, 18, 29, 34—
36, 42, 47, 54, 55, 59, 61, 74, 77, 79, 80, 83, 84] provide control data
protection by enforcing the integrity of expected control flows based
on a program’s control-flow graph (CFG). However, CFI techniques
struggle to balance precision and runtime overhead in their control
flow enforcement. Numerous efficient CFI proposals suffer from a
large equivalence class (EC) [41], which is a set of indistinguishable
code targets for each indirect transfer due to the imprecise control
flow analysis. In this case, CFI cannot accurately detect an illegally
bent control transfer for a given EC [9, 24, 64]. Recent work [36] at-
tempts to address this inherent problem by enforcing a unique code
target (UCT) property (i.e., EC = 1). However, this technique suffers
from scalability, thus inhibiting wide adoption because it requires
background threads to process Intel PT packets, and dedicating a
CPU core for analysis.



Code-pointer integrity (CPI) [45] protects all code pointers (re-
cursively) in a program. Similar to CFI, CPI defends against con-
trol data attacks. CPI protects code pointers via isolation relying
on information hiding; however, attacks against information hid-
ing [23, 32, 57] can break this security guarantee. Furthermore, CPI
has a high memory overhead (105% on average) to keep track of
metadata for all sensitive pointers.

Data-flow integrity (DFI) [11, 72, 73] prevents both control and
non-control data attacks. DFI ensures that the data flow at runtime
does not deviate from a statically computed data flow graph (DFG).
DFI is a generic defense with broad coverage but suffers from high
runtime overhead due to frequent instrumentation of all load and
store instructions for data-flow tracking. It has a 104% performance
overhead and a 50% memory overhead on average.

Goal. Under this circumstance, we set our goal to provide a defense
mechanism that strikes balance between efficiency and effective-
ness. In particular, we focus on thwarting two critical classes of
memory corruption attacks, namely control-flow hijacking and
heap metadata corruption attacks, both of which let attackers
achieve arbitrary code execution. These two attacks are very popu-
lar and commonly exploited [13], making them a valuable target to
defend against. By focusing on these two critical attacks, we aim to
provide a pragmatic memory security defense that is both efficient
and effective.

Value Invariant Property. To this end, we propose the Value
Invariant Property (VIP), a new security policy that thwarts these
two attacks. VIP does this by enforcing the integrity of data values
for security-sensitive data (e.g., function pointers for an indirect call,
virtual function table pointers in C++ objects, and heap metadata).
VIP prevents software from accepting maliciously altered security-
sensitive data via memory corruption attacks. VIP achieves this
by capitalizing on the life cycle of security-sensitive data; security-
sensitive data should only be altered by legitimate updates so it
should be immutable between two legitimate updates. We call this
its value invariant period. This write-protection approach is similar
to WIT [2]. WIT assigns a color to each object and each write
instruction so that all objects written by a given instruction are
a specific color. However, WIT suffers from information hiding
limitations of its color table. VIP makes data immutable during this
life cycle period, by having a secure copy of security-sensitive data,
which is immutable to memory corruption attacks.

HYPERSPACE. We realize VIP as HYPERSPACE, our prototype de-
fense mechanism that applies VIP to thwart critical memory cor-
ruption attacks while maintaining low runtime overhead and mini-
mal additional hardware resources. HYPERSPACE records values of
security-sensitive data into a safe memory region and validates val-
ues before use to enforce value integrity. The safe memory region
is protected by Intel Memory Protection Keys (MPK) [39, 43, 60],
an efficient per-thread memory protection mechanism.
HypERSPACE enforces VIP to thwart control-flow hijacking and
heap metadata corruption attacks. We implement four state-of-the-
art security mechanisms with HYPERSPACE: 1) control-flow integrity
(VIP-CFI), 3) code pointer integrity (VIP-CPI), 2) virtual function
table pointer protection for C++ objects (VIP-VTPtr), and 4) inline
heap metadata protection. For the pointer protection mechanisms
(1-3), we design a compiler pass that automatically instruments code

pointers and sensitive data pointers to protect VIP. This is similar
to the protection scope offered by other protection mechanisms
such as CPI [45]. However, HYPERSPACE goes one step further by
supporting heap metadata protection, which is an additional source
of many sophisticated attacks. Our choice of protecting against
both control-flow hijacking and heap metadata corruption is to
demonstrate that VIP is capable of protecting not only sensitive
code pointers but also other sensitive data types.

In addition, we propose optimization techniques to significantly
lower the runtime overhead via reducing: the cost of each VIP pro-
tection instrumentation, the number of pointers to protect, and the
number of costly permission changes needed for the safe memory
region.

We evaluate HYPERSPACE using standard benchmarks (all C/C++
benchmarks in SPEC CPU2006) and real-world applications (NG-
INX web server and PostgreSQL database server). In addition, we
test HYPERSPACE against three real-world exploits and six synthe-
sized attacks that include: virtual function pointer table hijacking
attacks, a COOP attack [64], and a heap exploit, demonstrating
the effectiveness of HYPERSPACE. We detail how these attacks are
successfully detected and blocked by HYPERSPACE when an attempt
of corrupted sensitive data usage is detected. HYPERSPACE incurs
a small performance and memory overhead even when programs
are armored with HYPERSPACE’s strongest defense, VIP-CPI, which
guarantees the full integrity of all security-sensitive pointers.

To summarize, our contributions include:

e We propose a new security policy: by protecting the Value Invari-
ant Property (VIP) of security-sensitive data, we can effectively
mitigate critical memory corruption attacks.

o We built HYPERSPACE, a full prototype of the defense mechanism
that enforces the integrity of VIP for security-sensitive data in a
program. We implemented four state-of-the-art security mech-
anisms as HYPERSPACE use-cases to demonstrate how VIP and
HYPERSPACE can be used for protecting sensitive code/data point-
ers and heap metadata. We also design HYPERSPACE to prevent
attacks originating from malicious MPK use in userspace [14].

o We devised novel compiler optimization techniques that signifi-
cantly reduce the runtime overhead of HYPERSPACE instrumen-
tation and make HYPERSPACE a practical, deployable defense.

o We evaluate HYPERSPACE and its security mechanisms on bench-
marks, real-world applications, and synthesized attacks. Our re-
sults show that HYPERSPACE can defeat control-flow hijacking
and heap overflow attacks with an average of 6.18% performance
overhead and 13.18% memory overhead in SPEC CPU2006.

e We make our source code of HYPERSPACE publicly available at
https://github.com/cosmoss-vt/vip.

2 Background and Motivation

In this section, we describe our target attack classes that VIP
and HYPERSPACE aim to defend. We particularly focus on two of
the most critical memory corruption attacks — 1) control-flow hi-
Jjacking attacks caused by code/data pointer corruption and 2) heap
metadata corruption attacks — because they are the main avenue to
achieve arbitrary code execution (ACE) and arbitrary memory write,
which let attackers take full control of a system. We note that secu-
rity vulnerabilities and Common Vulnerability Exposures (CVEs)
that allow arbitrary code execution are rated between 7.5 (high)



/** == An example of a code pointer corruption attack =
void X(char *); void Y(char *); void Z(char *);

1
2
3
4 typedef void (*FP)(char *);

5 static const FP arr[2] = {&X, &Y};
6

7

8

void handle_req(int uid, char * input) {

FP func; // control data to be corrupted!
9 char buf[20]; // buffer that may overflow
10
11 if (uid<® || uid>1) return; // only allows uid == 0 or 1
12
13 func = arr([uid]; // func pointer assignment, either X or Y.
14
15 strcpy(buf, input); // stack overflow corrupting a code pointer!!!
16
17 (*func) (buf); // func is corrupted!
18
19 }
20 // END

21 /** == An example of a heap metadata corruption attack == */
22 // allocate 3 heap objects

23 A = malloc(100);

24 B = malloc(100);

25 C = malloc(100);

26 // frees object B

27 free(B); // Heap status: [ A ] [ heap metadata ]rci]
29 // a heap buffer overflow vulnerability

30 strcpy(A, input); // heap overflow corrupting metadatal!!

31 // Heap status: [ A ] [ corrupted metadata ] [ C ]
32 ... // arbitrary allocation attack of D
33 B = malloc(100); // corrupted metadata poisons tcache

3¢ D malloc(100); // may result in arbitrary allocation for D
3 ... // overlapping allocation attack of D

36 free(C); // unlink based on the corrupted metadata

37 D = malloc(100); // may result in overlapping allocation for D

39 // Overlapping/arbitrary allocation enables arbitrary memory write here
40 fgets(D, 100, stdin) // END

Figure 1: Two examples of vulnerable C code. Attackers can overwrite security-sensitive data by exploiting memory corruption vulnerabilities
to subvert a program’s control-flow or change a program’s intended behavior. On the left, an attacker exploits a stack overflow (strcpy(Q at
Line 15), which overwrites a function pointer (func) to subvert control-flow (e.g., arbitrary code execution at Line 17). On the right, an attacker
exploits a heap overflow (Line 30), which overwrites the heap metadata to control subsequent memory allocations (Line 37), which can be a

primitive for other attacks - e.g., arbitrary memory write at Line 40.

and 9.8 (critical) regarding their security impact [25, 26]. Then, we
present our analysis of two example vulnerabilities in Figure 1 and
patternize common characteristics of these attack classes. In par-
ticular, we define the notion of security-sensitive data, whose value
changes are critical to successful memory corruption. Subsequently,
we identify the Value Invariant Property as the key characteristic to
thwart these attacks, both effectively and efficiently.

2.1 Code Pointer Corruption Attack

Take an example of the vulnerable code on the left side of Figure 1.
The function handle_req(int, char*) is our point of interest. It
uses a local function pointer FP func as a local variable at Line 8
and uses another local buffer variable char buf[20] at Line 9. The
code assigns the variable func by selecting one of the predefined
function pointers (Line 11 and Line 13).

Here, func can only point either X (if uid == 0) or YO (if
uid == 1). However, since the execution of strcpy (buf, input) at
Line 15 failed to check the length of input against the buffer size
(buf[20]), an attacker may trigger a stack buffer overflow vulnera-
bility by supplying more than 20 characters to the string variable
input. This allows the attacker to change func, for example, from
XQO (suppose uid == 0) to an arbitrary function (e.g., system() to
execute an arbitrary command). Thereby, as a result of exploiting
the vulnerability at Line 17, the code may call an arbitrary function
of the attacker’s choice.

Implication. To launch a successful control-flow hijacking

attack, a popular avenue of attack is to overwrite a code/data
pointer to achieve arbitrary code execution.

2.2 Heap Metadata Corruption Attack

The code on the right side of Figure 1 is an example of a heap
metadata corruption attack. In particular, it demonstrates how heap
metadata corruption changes the behavior of a memory alloca-
tor and can be turned into an arbitrary memory write primitive,
which allows an attacker to alter arbitrary memory addresses with
attacker-assigned values. We assume the example program uses the
popular ptmalloc2 in glibc without loss of generality. The program
first allocates three heap objects A, B, and C in order and then frees

B (Lines 23-27). After freeing B, the heap will have a free memory
block between A and C. The free memory block starts with inline
metadata, which stores the size of the memory block and links to
the previous/next free memory blocks.

Then the program copies an input string to A (strcpy O at Line 30).
However, the strcpy code has a heap overflow vulnerability by
missing the length check of the input against the size of object A.
Thus, an attacker can trigger the heap overflow by supplying more
than 100 bytes to input and consequently will corrupt the heap
metadata right next to the object A. Corrupting heap metadata with
attacker-chosen data like this allows the attacker to mislead the
heap metadata management algorithm (Lines 33-37) [68]. As a re-
sult, future allocation will be located at an arbitrary location of the
attacker’s choice - e.g., a return address, function pointer, virtual
function pointer table pointer of a C++ object, and other security-
sensitive data, resulting in arbitrary memory write (Line 40), which
again can trigger arbitrary code execution if a code pointer is over-
written.

Implication. To launch a successful arbitrary memory write
attack via exploiting a heap overflow vulnerability, an attacker
must corrupt the heap metadata to mislead the heap management
algorithm.

2.3 Security-Sensitive Data

Based on the implications of our vulnerability analyses, we define
our notion of security-sensitive data to defend against these two
target attack classes. In a nutshell, we refer to security-sensitive
data as a variable/object in memory that is required to be corrupted
to complete a successful control-flow hijacking attack or a heap
metadata corruption attack.

From our stack overflow example, we have observed that attacks
require corrupting a code pointer (e.g., func) to achieve arbitrary
code execution. In addition, we extend our coverage to all sensitive
pointers [45], which include all code pointers and all data pointers
that can extend to a code pointer, to avoid indirect control-flow
hijacking leveraging sensitive data pointers. We follow the same
definition of sensitive pointers as Code Pointer Integrity (CPI) [45].

Likewise, in our heap overflow example, the attack requires cor-
rupting heap metadata (e.g., a free()-ed heap object, object B) to



mislead the heap management algorithm to launch an arbitrary
memory write attack. We regard inline heap metadata as security-
sensitive data because corrupting such data is essential for launch-
ing a successful attack.

In the next section, we discuss how we can mitigate these attacks
by safeguarding our new security property, the Value Invariant
Property (VIP), on security-sensitive data.

3 Value Invariant Property (VIP)

We introduce the Value Invariant Property (VIP), which is a common
property of security-sensitive data in critical memory corruption
attacks. Our intuition behind VIP originates from a common pat-
tern in programs: security-sensitive data should never be changed
between two legitimate writes so there is a period such that security-
sensitive data is immutable. Moreover, in many programs, the value
of security-sensitive data does not frequently change. These ob-
servations form the basis of our value invariant property. More
specifically, during the life cycle of an object, we have observed
that the values of security-sensitive data do not change after their
legitimate assignments and before the object’s destruction or new
legitimate value assignments.

We now re-investigate the two code examples in Figure 1 with
respect to our value invariant property in the rest of this section.

3.1 Value Invariant Property of a Code Pointer

We analyze the life cycle of a security-sensitive code pointer func
with respect to its value invariant period as follows.

(1) Assignment: The first and only assignment to func is on Line 13.

(2) In-use (value invariant property holds): After the assignment and
before the destruction of the stack, func never changes. Thus,
its value invariant period starts right after the value assignment.

(3) Destruction: The stack variable func will become invalid when
the function unwinds its stack, i.e., at the function epilogue.
Thereby, the period ends when the variable is destructed.

Attack. Overwriting the value of func during the value invari-
ant period in any manner, e.g., via exploiting a buffer overflow
vulnerability on Line 15, may conclude in a successful attack,
such as arbitrary code execution.

3.2 Value Invariant Property of Heap Metadata

We also analyze the life cycle of security-sensitive heap metadata
with respect to its value invariant period. Unlike the previous exam-
ple, heap metadata is created internally when malloc() and free()
are called. For brevity, we illustrate the life cycle of heap metadata
for object B, which is first allocated at Line 24, as follows.

(1) Metadata allocation: Calling free() on Line 27 will change the
heap metadata for object B, which is between A and C, to a free
state.

(2) In-use (value invariant property holds): Before running additional
heap operations such asmalloc() or free(), the heap metadata
of B should never change. Thus, its value invariant period starts
right after the free().

(3) Destruction: When subsequent malloc() is called at Line 33,
the memory allocator will allocate new memory on the old
object B’s location. Thus, the heap metadata of the old object

B is updated to the newly allocated state; the value invariant
period ends when the metadata is updated.

Attack. Overwriting the allocated heap metadata during the
value invariant period in any manner (e.g., via exploiting a heap
overflow vulnerability on Line 30) may mislead the heap manage-
ment algorithm in future malloc() and free () calls (Lines 33-37),
resulting in overlapping or arbitrary heap memory allocation.
Such a misled allocation allows arbitrary memory write when
code is written to the allocated memory (Line 40).

3.3 Utilizing VIP to Thwart the Attack

We can thwart memory corruption attacks on security-sensitive
data by disallowing any value update (i.e., protecting the integrity
of the value) during the value invariant period. In our examples, we
can identify that there is no legitimate value update when the value
invariant property holds (In-use phase) for both the func variable
and the heap metadata.

Hence safeguarding VIP requires a program to correctly keep
track of the value invariant period of security-sensitive data, regard-
ing their assignment/destruction life cycle. For our target security-
sensitive data (i.e., sensitive pointers and inline heap metadata), it
is possible to know the value invariant period precisely by analyz-
ing the load-store of sensitive pointers and malloc/free for the
construction/destruction of memory objects.

Asserting the value integrity defeats the attack because the at-
tacks in the examples require altering the value of security-sensitive
data during the value invariant period, which is blocked by the in-
tegrity protection. To protect VIP at runtime, one should be able to
confirm that the value has not been changed during the value in-
variant period. Before every use of VIP protected data (e.g., indirect
call/jump, malloc()/free() calls), the protection must assure that
the value has not been changed between the assignment/allocation
and the destruction time. Doing this cuts off the essential step of the
attack, protecting security-sensitive data from potential memory
corruption the attacks.

4 Threat Model and Assumptions

VIP and HyPERSPACE focus on thwarting two critical types of mem-
ory corruption attacks. Our assumption includes a program that
has one or more memory vulnerabilities (e.g., stack/heap buffer
overflow) that allow attackers to read from and write to arbitrary
memory. The attacker can use an arbitrary write capability to per-
form code/data pointer corruption attacks and/or heap metadata
corruption attacks. However, the attacker cannot modify or inject
code due to Data Execution Prevention (DEP) [40, 48]. We assume
that all hardware (e.g., Intel MPK) and the OS kernel are trusted
such that attacks exploiting those vulnerabilities are out of scope.
Regarding the use of Intel MPK for userspace protection keys, Con-
nor et al. discovered an attack that can bypass memory isolation
mechanisms based on MPK such as ERIM and Hodor. However, we
regard these attacks to be out of scope because HYPERSPACE does
not allow user programs to include or use any wrpkru instructions
for userspace protection.

5 HyYPERSPACE Design

The main challenge to realizing VIP is how to efficiently and
securely keep track of the value invariant property for sensitive



// Register a sensitive memory region

// starting at addr with size

void vip_register(void *addr, int size);

// Unregister a sensitive memory region

void vip_unregister(void *addr, int size);

// Write the current value in a sensitive memory
// region to the corresponding safe memory region
void vip_write(void *addr, int size);

9 // Same as vip_write() but do not allow further writes
10 void vip_write_final(void *addr, int size);

11 // Check if the sensitive memory value is the same
12 // as the safe memory value

13 void vip_assert(void *addr, int size);

® N oUW

vip_unregister() vip_unregister()

Non-sensitive

vip_unregister()

vip_register()
vip_write_final()
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Figure 2: VIP primitives (left) and the state transition diagram (right) for VIP protected memory. VIP primitives trigger state transitions for
a specified memory location. VIP manages the intended value of sensitive data for integrity checking (vip_assert). Mismatching values of
sensitive data or an illegal state transition indicates a value integrity violation.

data. As a prototype of VIP protection, we propose HYPERSPACE,
which provides a secure and efficient metadata store for checking
value integrity. In particular, the metadata storage cannot be vul-
nerable to tampering by attackers in addition to having minimal
access costs and memory overhead to be practical. We first dis-
cuss HYPERSPACE design details and then how HYPERSPACE can be
leveraged for various security applications in the following section.

5.1 HYPERSPACE Primitives

HyYPERSPACE manages the state of a memory location as illustrated
in Figure 2. When a program starts, the entire memory space is
in a non-sensitive state, meaning that no memory location stores
security-sensitive data. To protect a memory location storing security-
sensitive data, HYPERSPACE first requires the location to be regis-
tered upon its allocation (vip_register). Then, the memory will be
in a sensitive, uninitialized state. Once the security-sensitive data
is written to the memory location, HYPERSPACE creates a copy of
its value in the safe memory region (vip_write) that HYPERSPACE
manages at runtime. vip_write is valid only if the target location
has already been registered via vip_register, and if it is, the mem-
ory will be in a sensitive, initialized state. Notably, if we know a
write should be the final one until the deallocation of the memory,
i.e., the data is in value invariant period, then we can annotate
this (vip_write_final). This will put the memory into a sensitive,
finalized state, and HYPERSPACE does not allow any further writes
to that memory location. VTable pointer in C++ is a use-case of
this state because it is written only once at the object construction
time and should not be updated until the object is being destructed.

Before loading any sensitive data, the program should check
whether its value is changed or not by comparing the value in the
regular memory region with the value in the safe memory region
(vip_assert). If two values do not match or a program attempts to
perform an illegal state transition, it alerts of the value integrity
violation and stops the program execution. Finally, when a sensitive
memory location is deallocated, it is unregistered (vip_unregister)
and reverts the memory locations to the default non-sensitive state,
allowing it to be reused again in the future.

5.2 Parallel Safe Memory Region Layout

To efficiently access the safe memory region, we bisect the virtual
address space of a process into a regular memory region and a safe
memory region as illustrated in Figure 3. When a process is created,
HyPERSPACE kernel reserves the upper half of the virtual address
space as the safe memory region.

Low address
-

%gs: (addr) High address

Regular memory region

Safe memory region

Figure 3: HYPERSPACE memory layout. The safe memory region
is protected by Intel Memory Protection Keys (MPK) and it is effi-
ciently accessible using hardware segmentation (%gs) in x86 archi-
tecture.

Additionally, the %gs register is set to the starting address of the
safe memory region.! With this parallel memory layout, accessing
a safe memory location from a regular memory location is merely
adding the original regular memory offset to the start address of the
safe memory region; this operation can be encoded with a single
instruction in x86 architecture using segmentation (see Figure 4).

We note that the safe memory region is an anonymous region,
managed by the kernel. That is, the OS kernel reserves half of the
virtual address space, however, a physical page is allocated only
on a process’s first access to a page in the safe region, minimizing
runtime memory overhead.

Even though we are reserving half of the virtual address space,
this should not be a problem, since we target the 64-bit x86 archi-
tecture. Moreover, note that the address space is reserved without
physical memory allocation. In the typical 4-level paging scheme,
reducing the user-space virtual address size by half still leaves 64 TB
of memory open for addressing. If a 5-level paging scheme is ap-
plied, the reduced user-space virtual address size still leaves 32 PB
free. These are both still large enough in practice.

5.3 Protecting Safe Memory Using MPK

The parallel memory layout enables efficient access to the safe
memory region. However, taking such a large virtual address space
makes it infeasible to hide the safe memory region from attackers.
Instead, we protect the safe memory region using Intel Memory
Protection Keys (MPK), which is an efficient per-thread memory
protection mechanism in the x86-64 architecture [39, 43, 60].

By default, the safe memory region is read-only. Only during VIP
operations that update the safe memory region (i.e., vip_register,
vip_unregister, vip_write, and vip_write_final), HYPERSPACE
temporarily grants read-writable permissions to only the thread
executing those VIP operations. Thus, any write attempt to safe
memory by an unauthorized thread at an unauthorized time will
cause a segmentation fault error.

!Note that dedicating %gs does not harm supporting of TLS in Linux because
Linux/glibc uses %£fs for TLS. On Windows using %gs for TLS, %fs can be used for
HyPERSPACE.



We use Intel MPK to efficiently change access permissions of the
safe memory region for each thread. With MPK, a virtual memory
region is assigned to one of the 16 domains under a protection
key, which is encoded in a page table entry. Memory access per-
missions of each domain are independently controlled through an
MPK register. Changing memory access permissions is fast as it
only takes around 23 CPU cycles on average using a non-privileged
instruction wrpkru [60]. Also, the impact of permission changes
is thread-local as the MPK register is per-CPU. The discussion
regarding the possible misuse of VIP primitives is addressed in §10.

5.4 Representing State of Safe Memory

In HYPERSPACE, each memory location is in one of four states shown
in Figure 2. HYPERSPACE manages an additional area at the end of
the safe memory regions to represent the state of each memory
location. Because HYPERSPACE manages sensitive data in 8-byte
granularity, 2 bits of metadata are assigned for each 8-byte chunk
of sensitive data. The state bitmap is updated upon memory state
transition. HYPERSPACE detects an attempt for illegal state tran-
sition (e.g., vip_write or vip_assert on non-sensitive data) and
prevents illegal/malicious use of HYPERSPACE primitives. With our
bitmap representation, access to the state can be efficiently done
using segmentation (see Figure 4).

5.5 Safety of Safe Memory

In HYPERSPACE, we ensure the spatial and temporal safety of security-
sensitive data with HYPERSPACE primitives and the memory state
management model. For temporal safety, HYPERSPACE keeps track
of the registration status of the protected data. In this regard,
the vip_register operation changes the status of safe memory
from not-in-use to in-use. Based on this temporal status tracking,
HyPERSPACE guarantees spatial safety of safe memory by managing
the safe memory region in an 8-byte block granularity. HYPERSPACE
allows access only to the registered, valid blocks and faults on any
unregistered access, such as out-of-bound unregistered access of the
safe memory. Although HYPERSPACE does not guarantee full tem-
poral safety, it significantly raises the bar. By providing registration-
based checking, HYPERSPACE denies access to unregistered sensi-
tive data. However, it cannot distinguish if a sensitive data is freed
then reallocated. This could open the possibility of a temporal attack,
albeit it would be significantly harder to achieve.

5.6 Low Memory Overhead

The maximum memory overhead is bounded to 103.1% of an ap-
plication’s total memory usage in the regular memory region (T +
T * 624l;7iit:s where T is usage). This is relatively low compared to
approaches managing rich metadata (e.g., tag, bounds) such as
CPI [45] and SoftBound+CETS [49-51]. Actual memory overhead
is much lower than the maximum overhead because HYPERSPACE
relies on sparse address space support of the underlying OS for the
safe memory region. Initially, the OS kernel reserves the virtual
address space without allocating physical memory. When a pro-
cess accesses the safe memory region, the OS kernel will allocate
a physical page for a faulting virtual address. This also applies to
the page table entries, hence, HyPERSPACE will allocate memory
pages only for the corresponding regular memory page that stores
safe data. Our evaluation results in §9.3.2 show that the additional

1 // Get the safe memory value for a given address

2 uint64_t vip_load_safe_memory_8b(void *addr) {

3 uint64_t value;

4 asm volatile ("mov %%gs:0x0(%[offset]), %[valuel”

5 :[value] "=r" (value) :[offset] "r" (addr) );

6 return value;

7}

8 // Get the first status bit for a given address

9 uint8_t vip_get_safe_memory_status_bit®(void *addr) {
10 void *bitmap_addr = (void *)(((uint64_t)addr >> 5) & ~0x3);
11 uint64_t bitmap_idx = ((uint64_t)addr & 0x£f8) >> 2;
12 uint8_t bit;

13 asm volatile (

14 "btq %[bitmap_idx], %%gs:(%[bitmap_addr],%[area_sz])"
15 : ¢ [bitmap_idx] "r" (bitmap_idx),

16 [bitmap_addr] "r" (bitmap_addr),

17 [area_sz] "r'" (ADDR_SPC_SZ) );

18 asm volatile ("setc %[bit]" : [bit] "+rm" (bit) );
19 return bit;
20 }
Figure 4: Code for accessing safe memory and its state.

memory overhead of HYPERSPACE is marginal (13.18% on average
with SPEC 2006).

5.7 Putting It All Together

With HYPERSPACE, the design of VIP’s API in Figure 2 is simple and
efficient. Registering/unregistering sensitive data (vip_register
and vip_unregister) changes the corresponding bits in the state
bitmap. Writing sensitive data (vip_write and vip_write_final)
copies the sensitive value to the safe memory region and changes
the state bits if necessary. HYPERSPACE temporarily grants write
permissions to the safe memory region only for these four VIP
operations and only to the calling thread. HYPERSPACE checks value
integrity by comparing values between the regular and safe memory
regions (vip_assert). For all VIP operations, HYPERSPACE checks
if the memory is in a valid state for a given operation. Otherwise,
HYPERSPACE raises a security exception against any attempt of
illegal state transition.

6 HyPERSPACE Defenses

In this section, we present four defense mechanisms based on
HyPERSPACE to defeat control-flow hijacking and heap metadata
corruption attacks by enforcing the value invariant property. To
defeat control-flow hijacking attacks, HYPERSPACE implements: (1)
Control Flow Integrity (VIP-CFI) - protecting all code pointers, (2)
Code Pointer Isolation (VIP-CPI) - protecting all sensitive code/data
pointers, and (3) virtual function table pointer protection in C++ ob-
jects (VIP-VTPtr). We present automatic instrumentation for these
three protections. HYPERSPACE covers all sensitive global, heap,
and stack variables. To prevent heap metadata corruption attacks,
HYPERSPACE (4) extends ptmalloc2 [28], which is the default mem-
ory allocator in most Linux distributions, manually inlining VIP
API into its source code.

6.1 Control Flow Integrity (VIP-CFI)

We enforce the integrity of control flow by guaranteeing the safety
of all code pointers. VIP-CFI allows indirect control-flow transfer
only when a target code pointer matches with its legitimate copy
in the shadow memory region (i.e., the code pointer does not vio-
late its value invariant property). Thus, all function pointers must
be secured using VIP’s register, write, assert and deregister primi-
tives. HYPERSPACE accomplishes this by accurately identifying and
instrumenting all instructions that allocate, write, use, and deal-
locate code pointers. We note that VIP-CFI provides the unique
code target (UCT) property [36] as it allows only a single target for



each indirect control-flow transfer, the pointer that HYPERSPACE
made invariant. Thereby, VIP-CFI does not suffer from the attack
that ConFIRM [46] launches, which replaces an indirect call/jump
target to another allowed target in an equivalence class of multiple
allowed code addresses.

We identify code pointers using LLVM type information. Be-
cause code pointers can exist inside of structs or arrays (i.e., a
composite data type), HYPERSPACE recursively looks through each
element of container types as well. For cases where code pointers
are recognized as universal pointers (i.e., void* or char*), we look
ahead for its typecasting to its actual type further down in the
program and instrument accordingly. Specifically, if a pointer is
ever cast into a sensitive type — a code pointer or a composite data
type that is reachable to a code pointer — within a function, or
returned to another function where it is cast to a sensitive pointer,
HYPERSPACE considers this to be sensitive as well.

We handle memcpy and munmap as special cases separately with
their own intrinsics. Since memcpy and munmap take void* argu-
ments, HYPERSPACE gets the actual operand types before being cast
to void*, and instrumentation for memcpy and munmap operands is
done separately. In the case of an array of code pointers that is
memcpy’ed to another location, HYPERSPACE registers/writes each
array element to safe memory.

Registration of code pointers is instrumented immediately after
its allocation. We use a shadow stack (specifically, SafeStack [45])
to protect return addresses and safe objects — stack objects whose
address is not taken - by isolating them from sensitive stack vari-
ables that are stored in the regular stack. HYPERSPACE instruments
all other heap variables, global variables, and other address-taken
code pointers on the regular stack via vip_register.

To determine when to perform vip_write for code pointers, we
look for any unsafe code pointers (i.e., code pointers not on the
SafeStack) that are the destination operand of a store instruction.
vip_write will be instrumented following such store instructions
if the variable is not in the SafeStack. vip_assert should be called
immediately before using any code pointer. Specifically, we look
for call and load instructions for instrumentation.

For sensitive heap and mmap-ed variables, deregistering is in-
strumented before free and munmap calls, respectively. For stack
variables, we deregister the entire current stack frame from the last
to the first registered variable address in a local frame at once to
prevent having iterative deregisters. Note that we did not handle C
unions because we did not encounter any in our evaluation.

6.2 Code Pointer Integrity (VIP-CPI)

In addition to code pointer protection in VIP-CFI, HYPERSPACE can
be used to guarantee the integrity of all sensitive code and data
pointers. HYPERSPACE recursively protects all sensitive pointers as
defined in CPI [45] - all code pointers and all data pointer types
that can reach a code pointer.

In order to detect the additional sensitive pointers required for
VIP-CPI, the type analysis of VIP-CFI is extended to include more
cases. Composite type objects that contain a function pointer are
recognized as sensitive type. Hence, pointers to these sensitive
types are protected and composite types that contain these pointers
are also protected creating a recursive chain of protection.

After detecting the protection sets for all the sensitive types in the
LLVM pass, its instrumentation is similar to VIP-CFI. HYPERSPACE
finds and instruments all IR instructions that declare, modify, and

use sensitive pointers. When a sensitive variable is declared, HYPERSPACE

looks up its protection set from the type analysis and instruments
vip_register accordingly. No changes are made for write instru-
mentation as HYPERSPACE simply instruments all the locations
where sensitive variables are modified as explained in the VIP-
CFI instrumentation. When sensitive variables are being used, all
load instructions of the sensitive variables are instrumented.
VIP-CPI leverages static analysis for determining sensitive-data.
Since static analysis is known to be imprecise, we over-approximate
when detecting security-sensitive pointers to guarantee full cover-
age. That is, HYPERSPACE regards a pointer as security-sensitive if
it cannot determine a pointer as non-security-sensitive at compile
time. One such example is that C/C++ allows char* pointers to
point to objects that are of any type. This conservative approach
may induce false positives (i.e., unnecessary protection), however,
such false positives will not compromise VIP’s security guarantees.

6.3 VTable Protection in C++ (VIP-VIPtr)

Hijacking the virtual function table pointer of an object is a com-
monly exploited attack [7, 64, 82]. In C++, virtual functions are an
essential part of dynamic polymorphism. At each virtual function
call, an appropriate function is chosen according to the object type.
The object type mapping to a virtual function is through the use
of a virtual function table pointer (VTPtr). The VIPtr is an array
pointer that includes virtual function pointers available for a spe-
cific object class type. A VIPtr is located in the header of an object
and is initialized in an object’s constructor. After initialization, this
pointer variable should not be altered during the entirety of the
variable’s lifetime.

To protect virtual function table pointers, we need to first cor-
rectly identify the VTPtr within C++ objects. This can be detected
using HYPERSPACE’s type analysis. When recursively dereferenced
from all proceeding pointer types, our analysis can identify the
code pointers and mark the VIPtr as a security-sensitive pointer.

The registration of VIPtr is instrumented along with the rest of
regular sensitive type registrations during object allocation. Com-
pared to VIP-CFI, no extra registration semantic changes were
needed for this support. To guarantee that the VIPtr of an object
will never change, HYPERSPACE instruments the vip_write_final
call right after the VTPtr is assigned by the object’s constructor.
This ensures that the object’s VTPtr does not get modified outside
of its constructor.

HYPERSPACE instruments vip_assert primitive immediately be-
fore the load instruction to guarantee that the VIPtr has not been
tampered with. Similar to registration, the same deregistration se-
mantics as in VIP-CFI are used to deregister the VIPtr along with
other sensitive values the object may contain.

6.4 Heap Metadata Protection

The heap memory allocator is essential in building an efficient and
secure program. ptmalloc2 [28] is one of the most widely adopted
heap allocators. ptmalloc2 and many other heap allocators (e.g.,
dlmalloc [20] and tcmalloc [33]) adopt an inline metadata design
for performance reasons. Unfortunately, this inline metadata design



suffers a major security flaw. As shown in §2.2, an adversary can
compromise inlined metadata to perform arbitrary code execution
by exploiting heap-based buffer overflow vulnerabilities. Although
several security mechanisms were proposed in an attempt to address
this issue, they are still able to be bypassed [21, 22, 81].

To defend against this inline heap metadata corruption attack,
we instrument the ptmalloc2 source code manually. We register 32-
byte metadata whenever a new memory chunk is created (e.g., split-
ting one large chunk into two smaller chunks) and deregister the
32-byte metadata whenever a memory chunk is deleted (e.g., merg-
ing two small chunks into one big chunk) using vip_register and
vip_unregister. For each malloc and free, we first check whether
the inline metadata is corrupted using vip_assert. After updat-
ing metadata, we copy the newly written metadata to the safe
region using vip_write. This approach protects inline heap meta-
data against state-of-the-art corruption attacks such as poisoned
NULL byte, 1-byte NULL overflow [22], and unsafe unlink [17] by
asserting metadata during malloc and free to detect corruption.
7 HyYPERSPACE Optimizations

We present optimization techniques applied to reduce HYPERSPACE’s
overhead of instrumentation and to reduce the memory access over-
head for our safe memory region.

7.1 Runtime Silent Store Elimination (SLNT)

VIP utilizes Intel MPK to efficiently control safe memory permis-
sions. In most cases, changing the permissions of the safe memory
region using MPK is fast enough. However, it could incur significant
overhead if an application requires frequent permission changes.
We have observed that some applications keep updating sensitive
data with the same value — also known as a silent store. Such frequent
silent stores to the safe memory region are detrimental because it
requires frequent MPK permission changes.

With this, we eliminate silent stores to the safe memory region
using runtime checking. For vip_write, we check if the value being
written is the same as its safe copy (i.e., silent store) as well as if the
target safe memory is already in a sensitive, initialized state. If so,
the write operation is not necessary, allowing HYPERSPACE runtime
to skip the vip_write. Therefore, HYPERSPACE only utilizes wrpkru
in the first vip_write. Any subsequent vip_write that writes the
same data value will be ignored as no update is necessary to safe
memory. This reduces the number of unnecessary wrpkru calls.

Our optimization is effective because vip_write is one of the
most frequently used VIP functions and changing permissions using
wrpkru is more expensive (~23.3 CPU cycles) compared to reading
the current MPK permissions using rdpkru (~0.5 CPU cycles). This
prevents unnecessary writes and MPK permission changes in many
applications (e.g., 453 .povray as described in §9.3.1).

7.2 Coalescing Permission Changes within a Basic Block
(CBB)

To further reduce the unnecessary toggling of safe memory
region permissions, we introduce an optimization technique to
coalesce a series of HYPERSPACE protection instrumentation (i.e.,
vip_safe_memory_unlock and vip_safe_memory_lock) within a ba-
sic block. vip_safe_memory_unlock and vip_safe_memory_lock re-
fer to the opening and closing of the safe memory region with the
MPK instruction, wrpkru.

1 = Instrumentation of consecutive writes of sensitive data ==
2 - LISTOP is a sensitive type containing a function pointer.

3 Thus, its two members, op_last and op_sibling, pointing to

4 * other LISTOP instances are also sensitive data. */

5 OP *Perl_append_list(pTHX_ I32 type, LISTOP *first, LISTOP *last){
6

7

8

/)
first->op_last->op_sibling = last->op_first;
// vip_safe_memory_unlock();

9 // vip_write(&first->op_last->op_sibling, 8);
10 // vip_safe_memory_lock();

11 first->op_last = last->op_last;

12 // vip_safe_memory_unlock();

13 // vip_write(&first->op_last, 8);

14 // vip_safe_memory_lock();

15 first->op_flags |= (last->op_flags & OPf_KIDS);
16 FreeOp(last);

17 return (OP*)first;

18}

19 /** == Coalescing permission changes in a basic block ==
20 OP erl_append_list(pTHX_ I32 type, LISTOP *first, LISTOP *last){
21 72y

22 first->op_last->op_sibling = last->op_first;

23 // vip_safe_memory_unlock();

24 //  vip_write(&first->op_last->op_sibling, 8);
25 first->op_last = last->op_last;

26 // vip_write(&first->op_last, 8);

27 first->op_flags |= (last->op_flags & OPf_KIDS);
28 // vip_safe_memory_lock();

29 FreeOp(last);

30 return (OP*)first;

31 }

Figure 5: Before (top) and after (bottom) basic block level coalescing
optimization for permission changes in 400.perlbench (Lines 23-28).

Figure 5 shows an example of an instrumented function from
400. perlbench in SPEC CPU2006, where LISTOP is a sensitive type.
The original instrumentation (top), shows the modification of a sen-
sitive object’s linked list (Lines 7 and 11), which requires opening of
the safe memory region. However, repetitively unlocking and lock-
ing is unnecessary if VIP API calls are consecutive in a basic block. In
this case, there is neither control flow change nor store instructions
capable of corrupting arbitrary memory locations. Therefore, it is
safe to place the locking instrumentation (vip_safe_memory_lock),
which reverts the safe memory permission to read-only, after the
very last VIP API call as shown in Figure 5 (bottom).

Based on this intuition, we introduce a coalescing-safe basic block,
where we can safely coalesce all write instrumentations in a basic
block. All memory writes in a coalescing-safe basic block are guar-
anteed to not be capable of corrupting arbitrary memory locations.
Therefore, a store target address should be limited to one of the
following: (1) a sensitive type that is protected by VIP, (2) a non-
sensitive field of a sensitive type whose address is bounded by the
sensitive type, or (3) a local variable in a safe stack. Consequently,
the safe memory region can safely remain unlocked until the end
of the basic block. Looking at the optimized instrumentation in Fig-
ure 5 (bottom), all intermediary permission changes are removed
and a single lock function is placed at the end of its basic block
(Line 28). This greatly reduces unnecessary permission changes.

7.3 Coalescing Permission Changes within a Function (CFN)

We introduce a coalescing-safe function by extending the notion
of a coalescing-safe basic block to further reduce the MPK permis-
sion change overhead. A function is considered to be coalescing-safe
— i.e, not capable of corrupting arbitrary memory locations — if
it meets three conditions: (1) all basic blocks in the function are
coalescing-safe; (2) it does not contain any indirect calls, and (3)
all direct call targets are coalescing-safe functions. In other words,
all store instructions in the function and all callee functions are



1 /** == Instrumentation of writing sensitive data ================
2 - OP is a sensitive type containing a function pointer.

3 Thus, its member, op_next, pointing to another OP

4 is also sensitive data, which needs to be protected. */

5 OP * Perl_linklist(pTHX_ OP *0) {

6 register OP *kid;

7

8

/o

if (cUNOPo->op_first) {
9 o->op_next = LINKLIST(cUNOPo->op_first);
10 // vip_safe_memory_unlock();
11 // vip_write(&o->op_next, 8);
12 // vip_safe_memory_lock();
13 for (kid = cUNOPo->op_first; kid; kid = kid->op_sibling) {
14 if (kid->op_sibling) {
15 kid->op_next = LINKLIST(kid->op_sibling);
16 // vip_safe_memory_unlock();
17 // vip_write(&id->op_next, 8);
18 // vip_safe_memory_lock();
19 } else {
20 kid->op_next = o;
21 // vip_safe_memory_unlock();
22 // vip_write(&kid->op_next, 8);
23 // vip_safe_memory_lock();
24} 1}
25 else {
26 o0->0p_next = o;
27 // vip_safe_memory_unlock();
28 // vip_write(&o->op_next, 8);
29 // vip_safe_memory_lock();
30 3
31 return o->op_next;
32 }
33 /** == Coalescing permission changes in a safe function ======= */

34 OP * Perl_linklist(pTHX_ OP *0) {
35 register OP *kid;
36 // vip_safe_memory_unlock();

3 /)

38 if (cUNOPo->op_first) {

39 o->op_next = LINKLIST(cUNOPo->op_first);

40 // vip_write(&o->op_next, 8);

41 for (kid = cUNOPo->op_first; kid; kid = kid->op_sibling) {
42 if (kid->op_sibling) {

43 kid->op_next = LINKLIST(kid->op_sibling);
44 // vip_write(&id->op_next, 8);

45 } else {

46 kid->op_next = o;

47 // vip_write(&id->op_next, 8);

48 11}

49 else {

50 o->op_next = o;

51 // vip_write(&o->op_next, 8);

52 3

53 // vip_safe_memory_lock();
54 return o->op_next;
55

}
Figure 6: Before (top) and after (bottom) function level coalescing
of permission changes in 400.perlbench (Lines 36-53).
guaranteed to not be capable of corrupting arbitrary memory loca-

tions. Thus, unlocking and locking instrumentation can be safely
coalesced at the function level.

Figure 6 shows an example of function-level coalescing from
400.perlbench. There are four basic blocks that each instrument
vip_write for the sensitive linked list pointer value (op_next). The
top shows VIP instrumentation before this optimization where each
basic block with vip_write is also fitted with unlocking/locking
safe memory. The bottom shows the same function with the opti-
mization enabled, such that all unlocking/locking of safe memory
in each basic block is removed, and instead a single pair of unlock
and lock is placed at function entry and exit (Lines 36, 53).

7.4 Inlining VIP Functions (INLN)

To minimize instrumentation overhead and eliminate function call
overhead, our instrumentation pass inlines HYPERSPACE API calls.
Furthermore, we optimized HYPERSPACE’s API calls specifically for
handling and protecting 8-byte data. This is because most sensitive
data needing protection are usually various pointer types. These
8-byte optimized APIs are inlined using LLVM’s Link Time Opti-
mization (LTO).

7.5 Excluding Objects in Safe Stack (SS)

As discussed in §6, we use SafeStack [75] to protect return addresses
and safe objects that are address-not-taken stack objects. SafeStack
isolates safe objects from all sensitive stack objects that are on
the regular stack. Hence HYPERSPACE does not need to instrument
any objects on the SafeStack. This helps to reduce performance
overhead especially when a program frequently uses temporary
stack variables that belong to sensitive types.

7.6 Optimizing Safe Memory Access (HGP)

Due to maintaining dual memory regions, HYPERSPACE experiences
more frequent page faults and higher TLB pressure leading to higher
overhead in accessing memory. To optimize safe memory access,
we utilize huge pages provided by the OS kernel. Compared to the
default 4 KB page size, the huge page configuration uses 2 MB pages
for the safe memory region to reduce the number of page faults
and TLB misses making safe memory access more efficient.

8 Implementation

Our HYPERSPACE prototype consists of 4300 lines of codes in Linux
Kernel, LLVM, ptmalloc2, and a library to implement the VIP APL
Code instrumentation is done via a Module pass on LLVM 9.0.0
(2516 lines of code). Linux kernel 5.0.0 was modified (378 lines of
code) to initialize the virtual address space of a user process for
VIP by splitting the userspace virtual address into regular and safe
memory regions. Also, we manually instrumented ptmalloc2 (902
lines of code) with VIP primitives to guarantee the integrity of heap
metadata. The VIP library consists of 505 lines of code.

We note that HYPERSPACE executables are compatible with un-
instrumented shared libraries to a certain extent. Un-instrumented
libraries with read-only operations are fully compatible; accessing
sensitive pointers from un-instrumented libraries will only access
data from the regular memory because there are no VIP primi-
tives. Un-instrumented libraries that perform write operations will
prompt a crash by vip_assert before instrumented code uses the
sensitive pointer as its safe memory counter part cannot be updated
without VIP primitives. If such a use-case is required (i.e., library
code needs to modify a sensitive pointer), the library should be
recompiled with HYPERSPACE such that it is also instrumented.

9 Evaluation

We first evaluate how effectively HYPERSPACE can prevent real-
world attacks by enforcing the value invariant property (§9.1). Next,
we evaluate the efficiency of HYPERSPACE applications described
in §6 using SPEC CPU 2006 and two real-world applications (§9.2).
Lastly, we analyze the impact of our optimization techniques (§9.3)
as well as the memory overhead of HYPERSPACE.

All applications were run on a 24-core server equipped with two
Intel Xeon Silver 4116 processors (2.10 GHz) and 128GB DRAM. All
benchmarks were compiled with LLVM SafeStack [75]. Additionally,
GNU gold v2.29.1-23.fc28 is used for linking to enable LLVM LTO.

9.1 Security Experiments

We evaluated all security applications described in §6, with three
real-world exploits and six synthesized attacks.

9.1.1 Real-World Exploits We first collected three publicly avail-
able exploits against three vulnerable programs.
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Figure 7: The performance overhead of SPEC CPU2006, NGINX web server, and PostgreSQL database server relative to an unprotected baseline
build. Our three VIP protections are: (1) heap metadata protection, (2) CFI and C++ VIPtr protection, and (3) CPI protecting all sensitive pointers.
HyPERSPACE imposes negligible average performance overhead of 1.33%, 0.86% and 5.53% for VIP heap metadata protection, VIP-CFI+VTPtr

and VIP-CPI, respectively.

(1) CVE-2016-10190. This is a heap-based buffer overflow in
ffmpeg, a popular multimedia framework. This exploit allows re-
mote web servers to execute arbitrary code by overwriting function
pointers in an AVIOContext object. VIP-CFI/CPI successfully detects
this exploit [52] and halts its execution by asserting the corruption
of a function pointer in a victim AVIOContext object.

(2) CVE-2015-8668. This is a heap-based buffer overflow in 1ibti ff,
an image file format library. This exploit allows remote attackers
to execute arbitrary code. A malicious BMP file causes an integer
overflow followed by a heap overflow that overwrites a function
pointer in a TIFF structure. VIP-CFI/CPI successfully detects this
exploit [19] by asserting the corrupted function pointer before use.

(3) CVE-2014-1912. This is a buffer overflow in python2.7 caused
by a missing buffer size check. An attacker can overwrite a func-
tion pointer in PyTypeObject via a crafted string and can execute
arbitrary code. VIP-CFI/CPI blocks this exploit [66] by detecting

the corruption of the function pointer before use.
9.1.2 Synthesized Exploits We used synthesized exploits to

demonstrate how HYPERSPACE can defend VTPtr hijacking in C++
objects, COOP attacks [64] — a Turing complete attack via creating
fake C++ objects — and heap exploits.

(1) CFIXX C++ Test Suite. We used a C++ test suite [53] released
by Burow et al. [7]. It provides four VIPtr hijacking exploits (FakeVT,
FakeVT-sig, VTxchg, VTxchg-hier), and one COOP exploit. Essen-
tially, the VTPtr hijacking exploits overwrite a VTPtr in a C++ object.
In order to make the test suite more similar to real-world memory
corruption-based attacks, we modified the test suite to corrupt a
VTPtr using a heap-based overflow instead of directly overwriting
the VTPtr using memcpy. This modification is required for the attack
to be accurately replicated and does not affect the success or failure
of the attack. Without this modification, HYPERSPACE would deter-
mine this memcpy to be legitimate since it would be interpreted as
the programmer’s intention. Our modification is inspired by a syn-
thesized exploit in OS-CFI [42]. VIP-VTPtr detects all four exploits
by checking if a VTPtr is corrupted before allowing a call to a virtual
function of a given object. The COOP attack creates a fake object
without calling the class’ constructor and calls a virtual function of
the fake object. VIP-VTPtr prevents this exploit by detecting that
the VTPtr of the fake object is not initialized as sensitive data and
raises an exception before the virtual function call.

(2) Heap Exploit. To evaluate heap metadata protection, we used
an exploit from [17], which overwrites the inline metadata of an al-
located heap memory. HYPERSPACE thwarts this attack by detecting
the metadata corruption upon free of a victim memory chunk.

9.2 Performance Evaluation

We evaluate the performance overhead of HYPERSPACE security
mechanisms described in §6 using SPEC CPU2006 and two real-
world applications: NGINX (v1.14.2) and PostgreSQL (REL_12_0).
SPEC CPU2006 has realistic compute-intensive applications that
are ideal to see the worst-case overhead of HYPERSPACE. We choose
SPEC CPU2006 over SPEC CPU2017 to easily compare HYPERSPACE
with prior work. Figure 7 shows performance overhead compared
to an unprotected original baseline build running on the original
kernel. The average numbers reported here are geometric means.
9.2.1 Performance Overhead of SPEC CPU2006

(1) Heap Metadata Protection. The performance overhead for

heap metadata protection with HYPERSPACE is 1.33% overall as Fig-
ure 7 shows. Three benchmarks have more than a 5% overhead.
These three benchmarks heavily call malloc and free. For example,
471.omnetpp calls malloc and free over 534 million times com-
bined. In addition to omnetpp, perlbench, dealII, and xalancbmk
call malloc and free millions of times as well, which explains this
overhead. This is consistent with results in previous work [15].

(2) VIP-CFI+VIPtr. We then evaluate CFI and C++ VIPtr pro-
tection, which together protect all code pointers of a program by
enforcing VIP. The performance overhead is negligible, 0.88%. A
few benchmarks show small performance improvement (1-2%) be-
cause SafeStack improves the locality of safe objects by moving
large arrays to the regular stack. In the worst case, only two C++
benchmarks, 471 .omnetpp and 483 .xalancbmk, exceed 3% overhead.
In these two benchmarks, the use of virtual function calls was more
frequent compared to other C++ benchmarks, resulting in higher
overhead from protecting the integrity of the VIPtr.

(3) VIP-CPI. HyPERSPACE’s CPI protection performs well, with
an average overhead of 6.18%. Two benchmarks, 460 .perlbench
and 453.povray, show the highest overhead. 400 .perlbench accu-
mulates overhead from frequently utilizing sensitive global vari-
ables that contain function pointers. For example, a perlbench func-
tion, Perl_runops_standard, contains a while loop, where the loop
condition contains sensitive indirect call, followed by the return
variable being assigned to a sensitive global variable. This causes
repetitive permission changes of the safe memory region and col-
lects undesirable, but unavoidable overhead. As for 453.povray,
most overheads are from assertions of function pointers in the
struct Method_Struct. This struct mimics C++’s virtual function
table by containing a series of function pointers. Other 453.povray
objects use this struct to call function pointers abundantly through-
out its runtime. HYPERSPACE protection recursively extends to



pointers of objects that contain the struct Method_Struct. These
chains of pointers require VIP instrumentation throughout the
benchmark resulting in unusual overhead. Recent works, ERIM [78]
and IMIX [27], also attempted to utilize MPK for protecting the
metadata store of CPI. However, they incur much more runtime
overhead than VIP-CPI: the maximum overhead is 3.2x higher for
ERIM and 28.5x for IMIX than VIP-CPL Moreover, they do not reveal
their runtime overhead for 400.perlbench and 453.povray, which
are most likely their two highest overheads similar to VIP-CPI. This
shows that our optimization techniques (especially, to reduce the
MPK permission change overhead) described in §7 are effective.

(4) Summary. The performance overhead of HyPERSPACE for SPEC
CPU2006 is negligible: 0.88% for VIP-CFI protection and 6.18% for
VIP-CPI protection. In comparison, current state-of-the-art defense
techniques like Code-Pointer Integrity [45] and pCFI [36], have an
average overhead of 8.4% and 7.88% with the worst-case overhead
of 44% and 49%, respectively.

9.2.2 Performance Overhead of Real-World Applications
NGINX and PostgreSQL are two widely used web and database
servers, respectively. We used the default NGINX configuration,
accommodating a max of 1024 connections per processor. Bench-
marking is done over a network using a server on the same network
switch. Similarly, the default configuration for PostgreSQL was also
used with a max of 100 connections. The numbers reported here
are latency at 24-cores. We configured benchmark clients — wrk and
pgbench - to fully stress the server.

(1) NGINX. We evaluate the performance of NGINX using an
HTTP benchmarking tool wrk [30]. wrk spawns threads that send
requests for a 6,745-byte static HTML page and measures the la-
tency and request throughput (req/sec). We ran wrk with 24 threads
with each thread handling 50 HTTP connections to fully stress
the server. We ran the host and server on two separate machines
with a 100Gbps Ethernet connection. The performance overhead is
negligible: heap metadata, CFI and CPI protections impose 1.38%,
0.44% and 1.05% of overhead, respectively. The request throughput
was 2.32K, 2.33K and 2.32K req/sec, respectively, compared to a
2.35K req/sec baseline. In addition, we evaluated NGINX with SSL
enabled. The results confirm that the performance overhead with
SSL is still negligible: 1.42%, 0.47% and 1.09% for heap metadata, CFI
and CPI, respectively. That is because while SSL is CPU-intensive,
it does not have many sensitive pointers. The request throughput
was 2.06K, 2.08K and 2.07K req/sec, respectively, compared to a
2.09K req/sec baseline.

(2) PostgreSQL. To evaluate the performance of PostgreSQL, we
used pgbench [76], which repetitively runs concurrent database
sessions that handle a sequence of SQL commands to measure the
average transaction rate and latency. We ran the host and server on
the same machine. We tested PostgreSQL with 24 concurrent data-
base clients. PostgreSQL shows negligible performance impact of
1.30%, 1.96% and 2.04% for heap metadata, CFI, and CPI protections,
respectively. Concretely, PostgreSQL showed 1696, 1685, and 1683
transactions-per-second, respectively, compared to a 1719 baseline.

9.3 Performance Analysis

We first analyze the impact of our optimization techniques and then
provide a detailed analysis of the memory consumption.

SINT sssssm CBDB ssssss CFN s INLN mmsss SS mmmmm HGP s

Performance improvement (%)

60
40 II
20

%

| |
Q& S
PRy 63"@ Q\A* & é‘&\o@& &'é&
&0*’0@“:'°°bc,°°6‘&%%\m
T TR E N ST TS P & ‘3\’§%
oS o LI N N R
N & > &

Figure 8: Impact of the performance optimization techniques de-
scribed in §7. (SLNT: runtime silent store elimination; CBB: basic
block-level coalescing; CFN: function-level coalescing; INLN: inlin-
ing VIP APIs; SS: safe stack; HGP: huge page).

9.3.1 Impact of Performance Optimization In order to mea-
sure the impact of each optimization technique, we turned off one
optimization at a time in a fully optimized VIP-CPL Figure 8 shows
the impact of each technique for SPEC CPU2006.

(1) Runtime Silent Store Elimination (SLNT). HYPERSPACE
reduces costly wrpkru instructions by eliminating unnecessary,
repetitive modifications of the safe memory region. If an object
has already been registered and its value is the same (i.e., silent
store), HYPERSPACE skips unnecessary, repetitive vip_register and
vip_write calls to reduce the costly MPK permission changes. This
optimization improves performance by 6.6% on average. In particu-
lar, it improves the performance of 453.povray by 75%.

(2) Coalescing Permission Changes within a Basic Block (CBB).
Coalescing permission changes within a basic block improves per-
formance 2.17% on average by minimizing the number of permis-
sion changes. 453 .povray is improved 9.8% for having an abundant
number of sensitive object pointers that are often updated.

(3) Coalescing Permission Changes within a Function (CFN).
Extending coalescing to function scope improves performance
1.4% on average. 464 .h264ref, 458.sjeng, and 400.perlbench have
higher performance gain of 7.2%, 6.8%, and 3.5%, respectively, due
to having commonly used functions such as Perl_linklist recog-
nized as a safe function.

(4) Inlining VIP Functions (INLN). Inlining improves perfor-
mance by 13.7% on average. In particular, 433.milc benefits the
most with 60.6% performance improvement due to the frequent use
of sensitive stack objects, which need a series of VIP calls.

(5) Excluding Objects in Safe Stack (SS). Leveraging SafeStack,
HyPERSPACE does not need to instrument safe objects. This im-
proves performance by 8.5% on average. SafeStack reduces the
number of variables that need to be protected to only those that
are in the regular stack. In general, C benchmarks such as 429.mcf
(28.4%) and 433.milc (53.5%) benefit from this optimization more
than C++ benchmarks since C++ objects are address-taken due to
C++ semantics such as constructors.

(6) Optimizing Safe Memory Access (HGP). Last but not least,
using huge pages for the safe memory region improves performance
by 4.5% on average by reducing the number of page faults and TLB
misses. This optimization is effective in the case where sensitive
objects are sparsely scattered by accessing larger portions of the
safe memory region. In particular, the performance of 456 . hmmer
improves 63.4% with this change.
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Figure 9: Memory overhead of VIP-CFI+VIPtr and VIP-CPI on SPEC
CPU2006. HYPERSPACE imposes marginal overhead: 12.16% and
13.18% of overhead for VIP-CFI and VIP-CPI, respectively.
9.3.2 Analysis on Memory Consumption Having a parallel

safe region could incur high memory overhead if implemented
naively. However, the safe region is an anonymous region that only
allocates a physical page if a process writes to the corresponding
page in the safe region. Also, its metadata is compact, requiring 2
bits for every 64 bits. We measured the maximum resident set size
(RSS) during programming execution. As Figure 9 shows, VIP intro-
duces around 13% memory overhead: with heap metadata protec-
tion enabled, VIP required 12.16% more memory for VIP-CFI+VIPtr
and 13.18% for VIP-CPI on average, respectively. VIP’s memory
overhead is much smaller than other state-of-the-art defense mech-
anisms (e.g., 105% for the original CPI [45]). The reason for such
memory overhead in state-of-the-art techniques such as CPI is due
to them having bigger metadata for each sensitive pointer. A few
benchmarks have relatively high memory overhead because these
benchmarks have many sensitive types, so they tend to generate
and access more sensitive pointers. For example, in onnetpp, many
data pointers are sensitive pointers because they can eventually
reach a code pointer. However, we found that this is uncommon.

10 Discussions & Limitations

Protecting Adversarial Misuse of MPK. A hypothetical attack
against HYPERSPACE is that MPK instructions could be adversarially
misused. Because all MPK instructions, including wrpkru, are un-
privileged instructions, if an attacker could subvert the control flow
and change the MPK permission of the safe region to read-writable,
then she is able to bypass HYPERSPACE defenses. However, such an
attack is unfeasible if the control flow is protected by HYPERSPACE’s
control flow hijacking defenses (e.g., VIP-CFI/CPI).

Limitation of Safe Stack. Safe Stack is one of our six optimiza-
tion techniques for VIP-CFI/CPI. Our current implementation relies
on software-based randomization, so it is susceptible to information
leakage attacks [23, 32, 57, 86]. However, it can be further hard-
ened by using a more secure shadow stack implementation. For
instance, Burow et al. [8] shows that a stronger isolation guaran-
tee for shadow stack is possible using Intel MPX (Memory Pro-
tection eXtension) [58] with a moderate performance overhead.
Also, Intel CET [38] — a hardware-based secure shadow stack — is
available in mobile processors [37] and shows lower overhead. We
expect that hardening the current software-based Safe Stack using
those new hardware features will guarantee stronger protection in
HyPERSPACE with lower performance overhead.

Concurrent access and TOCTOU. Accessing the safe memory
region in HYPERSPACE needs to be protected against race conditions.
On one hand, changing memory permissions of the safe region

using MPK does not suffer from concurrent access issues because
MPK registers are assigned per-CPU (and thereby per-thread). On
the other hand, changing of data values in the safe region may
suffer from data race issues; however, this can be protected by
making VIP primitives atomic for update operations (vip_register,
vip_unregister, vip_write, vip_write_final).

Extending VIP Protection to Other Security-sensitive Data.
We believe that VIP can be effectively extended to protect other
security-sensitive data beyond code/data pointers and heap meta-
data, which we focused on in this paper. The foundation of VIP
is to correctly identify security-sensitive data along with its value
invariant period. Once such analysis is available, HYPERSPACE can
work as a framework, i.e., we can plug in such analysis to enable
VIP protection of new security-sensitive data. We plan to further ex-
plore the automatic analysis of sensitive non-control data, thereby,
a wider range of VIP-based defenses can be automatically applied.

11 Related Work

VIP is a framework and encompasses several policies as we dis-
cussed. In the following, we discuss previously proposed mecha-
nisms and how VIP policies compare with them.

11.1 CFI

Protection Target/Method. Control-flow Integrity relies on a
program’s legitimate control-flow information. For most methods,
this is done by constructing a control-flow graph (CFG) which
showcases the control-flow information. Thus, by conforming to
the CFG, CFI allows only legitimate control-flow transition at all
indirect call/jump and return sites of the program.

Technique. Different CFI methods have different ways for deter-
mining the control-flow information and constructing the CFG.
Although there is only one legitimate target that should be allowed
at each call/jump site at a specific runtime, these methods inherently
have a large equivalence class (EC) size (i.e., number of allowed legit-
imate targets at one call site). A state-of-the-art implementation of
CFI, OS-CFI [42], has an indirect call site that allows 427 legitimate
call targets in SPEC CPU2006. For such a call site, attackers may
exploit existing attacks such as CFB [9] and COOP [64]. In contrast,
VIP can always guarantee the EC size to be 1 because the legitimate
pointer that can be used is immutable after its assignment.
Runtime checking. Approaches that check runtime program
data [29, 35, 36, 47] can further restrict the EC size, as small as 1
(uCFI [36]), which allows only the legitimate call target at a specific
runtime. However, these approaches require running additional
threads to parse the data from Intel Processor Trace (PT) and apply
runtime analysis, limiting scalability. In contrast, HYPERSPACE does
not require running additional threads for protection.

Overhead. Recent CFI implementations incur a little runtime per-
formance overhead. OS-CFI incurs 7.1% and pCFI incurs 9.9% (and
dedicating 1 CPU core for trace analysis) of performance overhead
while running the SPEC CPU2006 benchmark. VIP-CPI incurs less
overhead (6.18%) while guaranteeing better security.

11.2 OTI

Protection Target. Object Type Integrity (OTI) [7] aims to provide
protection to the virtual function table pointer of a C++ object.
Technique. By storing metadata on object construction and check-
ing the metadata at a virtual function call site, OTI can enforce the



type integrity to C++ objects at runtime. To protect its metadata,
the metadata storage of OTI is protected by Intel Memory Protec-
tion eXtension (MPX). Similarly, VIP protects its metadata with
HyPERSPACE via Intel MPK.

Overhead. OTIincurs 4.98% of performance overhead in the SPEC
CPU2006 benchmark. VIP offers better performance. Our evaluation
of VIP-CPS+VTPtr incurs only 0.88% of performance overhead.
11.3 CPI

Protection Target. Code Pointer Integrity (CPI) [45] aims to en-
force the integrity of sensitive pointers.

Technique. By defining sensitive pointers as code pointers and
pointers that refer to sensitive pointers recursively, CPI protects
the program by isolating all such sensitive pointers from attack-
ers. In isolating memory space for storing sensitive pointers, CPI
randomly allocates an address space and hides it from attackers.
Such a technique, information hiding, is proven to be susceptible to
recent attacks [23, 32, 57]. In contrast, VIP/HYPERSPACE provides
memory space isolation protection and tightened security of the
metadata based on hardware permission control via Intel MPK.

Overhead. CPIincurs 8.4% performance overhead, while its lighter-
weight alternative, Code Pointer Seperation (CPS), incurs 1.9% over-
head in the SPEC CPU2006 benchmark. VIP incurs lesser overhead
than CPI/CPS for their counterpart implementation; VIP-CFI incurs
0.88% and VIP-CPI incurs 6.18% of performance overhead.

Comparison with VIP. As mentioned in §2.3, we follow the same
definition of a sensitive pointer as in CPI. However, VIP has sev-
eral advantages that overcome the critical limitations in CPI and
other recent efforts that use Intel MPK to enhance the security of
CPI [27, 78]. The main limitation in CPI is the reliance on informa-
tion hiding to protect its safe region [23, 32, 57]. Our optimized use
of MPK resolves this. The naive use of MPK results in huge perfor-
mance overheads, as demonstrated by ERIM [78] and IMIX [27] in
their CPI+MPK evaluation (up to 320% for ERIM and up to 2856%
for IMIX). We have several optimizations (§7) that reduce the perfor-
mance overhead, and guarantee better security. Beyond defeating
control-flow hijacking attacks, we go a step further and protect
heap metadata which is not considered in CPI. ARM’s Pointer Au-
thentication Code (PAC) [63] enforces its protection by encoding
the unused bits of the pointer with a cryptographic hash. PAC
only exists on the ARM architecture. We designed VIP for x86_64
architecture, which does not have a hardware mechanism like PAC.

11.4 Heap-metadata protection

Protection Target/Method. One of the ways to secure the heap
metadata is through secure memory allocators. FreeGuard [69]
combines techniques from free-list allocators and BIBOP (Big Bag
of Pages) by acquiring a large block and dividing it into multiple sub-
heaps. Guarder [70] is similar in design to FreeGuard but focuses on
tunable security guarantees and enhancing randomization entropy.
Heap metadata hardening. In spite of the fact that the metadata
could be fully isolated, the metadata is not protected. Thus, it relies
on randomness and information hiding. Even though the attacker
would have more difficulty carrying out the attack, it is still possible.
This is due to the fact that the relationship between heap objects
and its metadata is deterministic. VIP-heap protection can be used
as an extension to harden allocators, to protect the metadata.

11.5 Memory Safety

Protection Target/Method. Memory safety techniques stop mem-
ory corruption attacks by enforcing spatial and temporal safety.
SoftBound [50] protects against spatial memory attacks by stor-
ing the bounds of every pointer as disjoint metadata. CETS [51]
protects against temporal memory attacks by storing a unique iden-
tifier with each object. BOGO [85] reuses the bounds stored by Intel
MPX [58] to achieve temporal safety by scanning the MPX bound
tables and invalidating the bounds of dangling pointers.

VIP scope. Full memory safety solutions incur significantly high
overhead (~116% for Softbound+CETS and ~60% for BOGO). VIP
strikes the balance between practicality and security by offering a
specialized scope of memory safety. By protecting security-sensitive
data, critical memory corruption attacks, particularly control-flow
hijacking and heap metadata attacks, can be thwarted whilst main-
taining relatively low overhead. This is more feasible than full
memory safety while providing strong security guarantees.

11.6 Non-Control Defenses and Protecting the Safe Region

Several defense mechanisms have been proposed that protect non-
control data or the metadata of other defense mechanisms (referred
to as the safe region). xMP [62] isolates sensitive data into domains,
leveraging Intel virtualization extensions. However, xMP [62] re-
quires heavy kernel modifications for its domains. DCI [10] sep-
arates the memory into two regions. It does bound-checking on
sensitive data and prevents pointers of non-sensitive data from
being dereferenced if they point to sensitive data. DCI [10] relies
on the programmer’s annotations to identify sensitive data. Mem-
Sentry [44] is a framework to enhance safe region isolation and
harden modern defense mechanisms, but does not utilize MPK.
Overall, MemSentry has a higher overhead than HYPERSPACE and
does not protect VTable pointers or heap metadata. In contrast,
VIP-CPI is fully automatic without requiring manual annotation
and HYPERSPACE requires minimal kernel modifications.

12 Conclusion

We have introduced the Value Invariant Property (VIP), which is
a common property of security-sensitive data for critical memory
corruption attacks. Our main focus is defending against two of
the most critical memory corruption attacks by securing security-
sensitive data — code/data pointers and heap metadata — to thwart
control-flow hijacking and heap metadata corruption attacks with
a defense offering low performance and memory overhead. We
then introduced HYPERSPACE, a prototype that protects VIP, and
implemented four security mechanisms. Our evaluation results
show that HYPERSPACE incurs low performance and memory over-
head: an average performance overhead of 0.88% and 6.18% for
CFI+VTPtr and CPI, respectively, and 13.18% memory overhead
for SPEC benchmarks and real-world applications. Our security
experiments using three real-world exploits and six synthesized
attacks show the effectiveness of VIP and HYPERSPACE.
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