
VIP: Safeguard Value Invariant Property for
Thwarting Critical Memory Corruption

Attacks
Mohannad Ismail (Virginia Tech), Jinwoo Yom (Virginia Tech), Christopher Jelesnianski (Virginia Tech),

Yeongjin Jang (Oregon State University), Changwoo Min (Virginia Tech)

1

CCS '21: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security

- Microsoft reported that 70% of all security bugs are due to various
memory safety issues.

- Top three memory corruption attacks:
- Heap out-of-bounds.
- Use-after-free.
- Type confusion.

Memory corruption vulnerability is root of all EVIL

2

stack

0xff

0x00

ret

func

buf

func = &XMalicious ptr

Vulnerable Control Data Example

3

C++ VTable pointer Use-after-free example

A’s VTable

B’s VTable

func1()

func2()

Stack

ret

a

Class Ab

a

Class Ab Class B

Heap

4

- Incur high overhead (e.g., DFI [OSDI06]):
- Frequent metadata lookup.
- Excessive instrumentation.

- Require additional resources (e.g., uCFI [CCS18]):
- Dedicated CPU cores for background analysis.

- Are narrow-scoped defense (e.g., OTI [NDSS18]):
- Needs to be used orthogonally with other defense techniques to

provide stronger security.

Problems with state-of-the-art techniques

5

STEP 1 STEP 2 STEP 3 STEP 4

Read program
layout.

Locate sensitive data
(e.g., code pointers).

Corrupt sensitive
data.

Use corrupted data

STEP 4

Solution

Use corrupted data
Do NOT allow attackers

to use the corrupted
data.

Breaking an essential step in memory corruption attacks

6

1. Introduction
2. Value Invariant Property (VIP)
3. HyperSpace
4. Implementation
5. Evaluation
6. Discussion
7. Conclusion

Outline

7

● Our intuition behind VIP originates from a common pattern in
programs:
○ Security-sensitive data should never be changed between two legitimate

writes so there is a period such that security-sensitive data is immutable.
● This period is represented by the state transition diagram, that relies

on VIP primitives to enforce value integrity of security-sensitive data.

Overview of Value Invariant Property (VIP)

8

● VIP maintains a shadow copy of sensitive data in an isolated “safe”
region.

● VIP checks and verifies value integrity instead of tracking control-flow.
● To provide value integrity, VIP checks if the “value” of sensitive data is

corrupted or not.
● If corruption is detected, VIP will raise a security exception.
● Compromised application is halted and prevented from executing

further.

Overview of Value Invariant Property (VIP)

9

Stack

0xff

0x00

ret

func

buf

func = &XMalicious ptr func = &X

Safe region

// validation failed, program aborted!

Mismatched!

Main concept of VIP for Control data

10

A’s VTable

B’s VTable

func1()

func2()

Stack

ret

a
Class A

b

a
Class A

b
Class B

Safe Region + data status

a

b Registered,Initialized

Registered,InitializedRegistered,InitializedRegistered,Initialized

Registered,Initialized

Can’t use deregistered data!

Heap

Main concept of VIP for C++ VTable use-after-free

11

The safe memory region is created by VIP’s modified Kernel.

● Application’s memory space is bisected into regular and safe memory regions.
● Status bitmap region holds the status bits for data that exists in the safe memory region.
● 8 byte in safe memory => 2 bits in status bitmap.
● Maximum memory overhead is bounded to 103.1%.
● %gs register holds the start address of safe region and used for fast safe region access.

VIP safe memory region

12

13

Security of the safe memory region

● The main issue with the use of the safe region is how to secure it from being
maliciously corrupted.

● Previous works, such as CPI [1], relied on information hiding.
● The main challenge is ensuring that the only way to access the safe region is

through the legitimate program logic.
● In order to overcome this challenge, we rely on Intel’s Memory Protection Keys

(MPK).
● By leveraging MPK, we can unlock the safe region when access is needed by

the program, and then lock it to prevent illegitimate access.

[1] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In
Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Broomfield, Colorado

● Intel’s new hardware primitive.
● Utilizes previously unused 4 bits in each page table for upto 16 different fine-grained

access control keys.
● New user-accessible register (PKRU) with Access/Write disable bits for each key.
● PKRU is a CPU register; thus, is thread-local.
● Two new instructions:

○ rdpkru - for reading page permission.
○ wrpkru - for modifying page permission.

MPK protected!

Read-only access

Read/Write access

Memory Protection Keys (MPK)

14

1. Introduction
2. Value Invariant Property (VIP)
3. HyperSpace
4. Implementation
5. Evaluation
6. Discussion
7. Conclusion

Outline

15

● These restrictions are enforced by HyperSpace with MPK.

HyperSpace

16

● HyperSpace manages the state of a memory location.
● When a program starts, the entire memory space is in a

non-sensitive state, meaning that no memory location
stores security-sensitive data.

● HyperSpace first requires the location to be registered
upon its allocation. Then, the memory will be in a
sensitive, uninitialized state.

● Once the security-sensitive data is written to the memory
location, the memory will be in a sensitive, initialized
state.

● If we know a write should be the final one until the
deallocation of the memory, then we can put the memory
into a sensitive, finalized state, and HyperSpace does
not allow any further writes to that memory location.

● Fully implemented prototype that enforces VIP.
● Four Defense Mechanisms:

○ Control flow integrity (VIP-CFI)
■ Protects all code pointers.

○ C++ VTable pointers protection (VIP-VTPtr)
■ Protects all virtual function table pointers (VTPtrs).

○ Code pointer integrity (VIP-CPI)
■ VIP-CFI and VIP-VTPtr protection + all sensitive object pointer

protections.

○ HyperSpace heap metadata protection
■ Protect against inline heap metadata corruption attacks.

HyperSpace

17

● Sensitive data varies for each security mechanism:
○ All function pointers. <- VIP-CFI

<- VIP-VTPtr

<- VIP-CPI

& VIP-CPI

& VIP-CPI

What is sensitive data?

18

○ VTPtrs in C++ objects.

● How can we detect these sensitive data?
○ Recursive static analysis/Instrumentation.

○ Sensitive Object pointers.

● MPK is fast, but it’s not fast enough:
○ rdpkru ~0.5 CPU cycles
○ wrpkru ~23.3 CPU cycles

● Frequent usage of wrpkru to modify safe region can incur significant overhead.
● There is no single optimization that significantly improved performance across

all components.

● Six major optimizations:
○ Inlining DVI functions.
○ Not instrumenting objects in the SafeStack.
○ Runtime checks to reduce permission changes.
○ Coalescing permission changes within a Basic Block.
○ Coalescing permission changes within a safe function.
○ Huge Page enabled.

Reduces wrpkru usage!

Optimization

19

Before After

Optimization: Basic-block level coalescing

20

● To reduce the unnecessary toggling of safe memory region permissions, we
introduce an optimization technique to coalesce a series of HyperSpace
protection instrumentation within a basic block.

● All memory writes in a coalescing-safe basic block are guaranteed to not be
capable of corrupting arbitrary memory locations.

Before After

Optimization: Function-level coalescing

21

1. All basic blocks in the function are coalescing-safe.
2. It does not contain any indirect calls.
3. All direct call targets are coalescing-safe functions.

1. Introduction
2. Value Invariant Property (VIP)
3. HyperSpace
4. Implementation
5. Evaluation
6. Discussion
7. Conclusion

Outline

22

VIP API library
Library for VIP

primitives
(505 LoC)

LLVM Compiler pass
Custom compiler pass
for static analysis and

instrumentation
(2516 LoC)

Linux Kernel modification
Bisect the memory

layout of VIP
enabled executables

(378 LoC)

+Additional support
ptmalloc inlining for

heap metadata
protection
(902 LoC)

HyperSpace Implementation

23

1. Introduction
2. Value Invariant Property (VIP)
3. HyperSpace
4. Implementation
5. Evaluation
6. Discussion
7. Conclusion

Outline

24

● 2 x Intel Xeon Silver 4116 processor (2.10 GHz)
● 128GB DRAM
● 12 Cores
● Fedora 28 Server Edition + Linux Kernel v5.0
● Compiled using LLVM SafeStack
● Linked with GNU gold v2.29.1-23.fc28

Performance/Memory evaluation with:
○ SPEC CPU 2006
○ NGINX (v1.14.2)
○ PostgreSQL

Security evaluation with:
○ 3 real-world exploits (CVEs)
○ 6 synthesized attacks

Evaluation setup

25

● We evaluated HyperSpace with three real-world exploits and six synthesized attacks.
These attacks demonstrate the effectiveness and versatility of HyperSpace.

Security Evaluation

26

● Real-world exploits:
○ CVE-2016-10190 : Heap-based buffer overflow in ffmpeg.
○ CVE-2015-8668 : Heap-based buffer overflow in libtiff.
○ CVE-2014-1912 : Buffer overflow in Python2.7.
○ All prevented when using VIP-CFI/CPI, since exploit occurs on sensitive pointers.

● C++ VTPtr synthesized attacks:
○ CFIXX C++ test suite released by Burow et al (VTPtr hijacking attacks).
○ COOP attack.
○ All prevented using VIP-CFI/CPI protection since we protect the VTPtrs

● Synthesized heap attack:
○ Overwrite inline metadata of an allocated heap memory during “unlink”; while removing

a memory chunk.
○ HyperSpace’s heap metadata protection can defend this, since we write/assert

the metadata during all malloc/free functions.

Heap Metadata Protection
- Average: 1.40%
- Median: -0.23%

HyperSpace

Runtime overhead of HyperSpace

27

VIP-CFI + VTPtr
- Average: 1.02%
- Median: 0.23%

VIP-CPI
- Average: 6.35%
- Median: 0.67%

Optimizations
● INLN = DVI API inlining
● SS = SafeStack
● RNT = Runtime permission check
● CBB = Basic Block-level coalescing
● CFN = Function-level coalescing
● HGP = Huge Page

Impact of the optimization techniques

28

HyperSpace

VIP-CPI
- Average: 15.47%
- Median: 5.88%

VIP-CFI+VTPtr
- Average: 14.42%
- Median: 5.27%

Memory overhead of HyperSpace

29

1. Introduction
2. Value Invariant Property (VIP)
3. HyperSpace
4. Implementation
5. Evaluation
6. Discussion
7. Conclusion

Outline

30

● Could MPK be misused?

○ Because all MPK instructions, including wrpkru, are unprivileged
instructions, if an attacker could subvert the control flow and change the
MPK permission of the safe region to read-writable, then she is able to
bypass HyperSpace defenses.

○ However, such an attack is unfeasible if the control flow is protected by
HyperSpace’s control flow hijacking defenses (e.g., VIP-CFI/CPI).

Discussion

31

● Control Flow Integrity (CFI):
○ OS-CFI [1] incurs 7.1% and 𝜇CFI [2] incurs 9.9% performance overhead running SPEC

CPU2006 Benchmark suite (while also requiring one dedicated CPU core for trace analysis).
○ VIP-CPI incurs less overhead (6.18%) while guaranteeing better security and does not

require running additional threads for protection.
● Code Pointer Integrity (CPI):

○ CPI [3] suffers from reliance on information hiding to protect its safe region.
○ VIP’s optimized use of MPK solves this. We have several optimizations that reduce the

performance overhead, and guarantee better security.
○ VIP also goes a step further by protecting heap metadata which is not considered in CPI.

● Object Type Integrity (OTI):
○ OTI [4] incurs 4.98% of performance overhead in the SPEC CPU2006 benchmark.
○ VIP offers better performance as well as greater protection coverage. Our evaluation of

VIP-CFI+VTPtr incurs only 0.88% of performance overhead.

Comparison with the state-of-the-art

32

[1] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie Yang. 2019. Origin-sensitive Control Flow Integrity. In Proceedings of the 28th USENIX Security Symposium (Security).
[2] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R. Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing Unique Code Target Property for Control-Flow Integrity. In Proceedings of the 25th ACM
Conference on Computer and Communications Security (CCS).
[3] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).
[4] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer. 2018. CFIXX: Object Type Integrity for C++ Virtual Dispatch. In Proceedings of the 2018 Annual Network and Distributed System Security Symposium (NDSS).

1. Introduction
2. Value Invariant Property (VIP)
3. HyperSpace
4. Implementation
5. Evaluation
6. Discussion
7. Conclusion

Outline

33

Conclusion
● Value Invariant Property (VIP) is a new defense policy that provides a

versatile and elegant solution to thwarting memory corruption exploits.

● Our prototype, HyperSpace, enforces VIP to provide various security
mechanisms with the strongest guarantee (VIP-CPI) having 6.35%
runtime overhead and 15.47% memory overhead.

● Contributions:
○ VIP.
○ HyperSpace.
○ Optimization of HyperSpace.
○ Thorough evaluation of HyperSpace.

34

Thank You !

