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- Microsoft reported that 70% of all security bugs are due to various 
memory safety issues.

- Top three memory corruption attacks:
- Heap out-of-bounds.
- Use-after-free.
- Type confusion.

Memory corruption vulnerability is root of all EVIL
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C++ VTable pointer Use-after-free example
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- Incur high overhead (e.g., DFI [OSDI06]):
- Frequent metadata lookup.
- Excessive instrumentation.

- Require additional resources (e.g., uCFI [CCS18]):
- Dedicated CPU cores for background analysis. 

- Are narrow-scoped defense (e.g., OTI [NDSS18]):
- Needs to be used orthogonally with other defense techniques to 

provide stronger security.

Problems with state-of-the-art techniques
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STEP 1 STEP 2 STEP 3 STEP 4

Read program 
layout.

Locate sensitive data 
(e.g., code pointers).

Corrupt sensitive 
data.

Use corrupted data

STEP 4

Solution

Use corrupted data
Do NOT allow attackers 

to use the corrupted 
data.

Breaking an essential step in memory corruption attacks
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● Our intuition behind VIP originates from a common pattern in 
programs: 
○ Security-sensitive data should never be changed between two legitimate 

writes so there is a period such that security-sensitive data is immutable.
● This period is represented by the state transition diagram, that relies 

on VIP primitives to enforce value integrity of security-sensitive data.

Overview of Value Invariant Property (VIP)
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● VIP maintains a shadow copy of sensitive data in an isolated “safe” 
region.

● VIP checks and verifies value integrity instead of tracking control-flow.
● To provide value integrity, VIP checks if the “value” of sensitive data is 

corrupted or not.
● If corruption is detected, VIP will raise a security exception.
● Compromised application is halted and prevented from executing 

further.

Overview of Value Invariant Property (VIP)
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Main concept of VIP for Control data
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Can’t use deregistered data!

Heap

Main concept of VIP for C++ VTable use-after-free

11



The safe memory region is created by VIP’s modified Kernel.

● Application’s memory space is bisected into regular and safe memory regions.
● Status bitmap region holds the status bits for data that exists in the safe memory region.
● 8 byte in safe memory => 2 bits in status bitmap.
● Maximum memory overhead is bounded to 103.1%.
● %gs register holds the start address of safe region and used for fast safe region access.

VIP safe memory region
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Security of the safe memory region

● The main issue with the use of the safe region is how to secure it from being 
maliciously corrupted.

● Previous works, such as CPI [1], relied on information hiding.
● The main challenge is ensuring that the only way to access the safe region is 

through the legitimate program logic.
● In order to overcome this challenge, we rely on Intel’s Memory Protection Keys 

(MPK).
● By leveraging MPK, we can unlock the safe region when access is needed by 

the program, and then lock it to prevent illegitimate access.

[1] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In 
Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Broomfield, Colorado



● Intel’s new hardware primitive.
● Utilizes previously unused 4 bits in each page table for upto 16 different fine-grained 

access control keys.
● New user-accessible register (PKRU) with Access/Write disable bits for each key.
● PKRU is a CPU register; thus, is thread-local.
● Two new instructions:

○ rdpkru - for reading page permission.
○ wrpkru - for modifying page permission.

MPK protected!

Read-only access

Read/Write access

Memory Protection Keys (MPK)
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● These restrictions are enforced by HyperSpace with MPK.

HyperSpace
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● HyperSpace manages the state of a memory location.
● When a program starts, the entire memory space is in a 

non-sensitive state, meaning that no memory location 
stores security-sensitive data.

● HyperSpace first requires the location to be registered 
upon its allocation. Then, the memory will be in a 
sensitive, uninitialized state.

● Once the security-sensitive data is written to the memory 
location, the memory will be in a sensitive, initialized 
state.

● If we know a write should be the final one until the 
deallocation of the memory, then we can put the memory 
into a sensitive, finalized state, and HyperSpace does 
not allow any further writes to that memory location.



● Fully implemented prototype that enforces VIP.
● Four Defense Mechanisms:

○ Control flow integrity (VIP-CFI)
■ Protects all code pointers.

○ C++ VTable pointers protection (VIP-VTPtr)
■ Protects all virtual function table pointers (VTPtrs).

○ Code pointer integrity (VIP-CPI)
■ VIP-CFI and VIP-VTPtr protection + all sensitive object pointer 

protections.

○ HyperSpace heap metadata protection
■ Protect against inline heap metadata corruption attacks.

HyperSpace
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● Sensitive data varies for each security mechanism:
○ All function pointers. <- VIP-CFI

<- VIP-VTPtr

<- VIP-CPI

& VIP-CPI

& VIP-CPI

What is sensitive data?
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○ VTPtrs in C++ objects.

● How can we detect these sensitive data?
○ Recursive static analysis/Instrumentation.

○ Sensitive Object pointers.



● MPK is fast, but it’s not fast enough:
○ rdpkru ~0.5 CPU cycles
○ wrpkru ~23.3 CPU cycles

● Frequent usage of wrpkru to modify safe region can incur significant overhead.
● There is no single optimization that significantly improved performance across 

all components.

● Six major optimizations:
○ Inlining DVI functions.
○ Not instrumenting objects in the SafeStack.
○ Runtime checks to reduce permission changes.
○ Coalescing permission changes within a Basic Block.
○ Coalescing permission changes within a safe function.
○ Huge Page enabled.

Reduces wrpkru usage!

Optimization
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Before After

Optimization: Basic-block level coalescing
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● To reduce the unnecessary toggling of safe memory region permissions, we 
introduce an optimization technique to coalesce a series of HyperSpace 
protection instrumentation within a basic block.

● All memory writes in a coalescing-safe basic block are guaranteed to not be 
capable of corrupting arbitrary memory locations.



Before After

Optimization: Function-level coalescing
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1. All basic blocks in the function are coalescing-safe. 
2. It does not contain any indirect calls.
3. All direct call targets are coalescing-safe functions.
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VIP API library
Library for VIP 

primitives
(505 LoC)

LLVM Compiler pass
Custom compiler pass 
for static analysis and 

instrumentation
(2516 LoC)

Linux Kernel modification
Bisect the memory 

layout of  VIP 
enabled executables

(378 LoC)

+Additional support
ptmalloc inlining for 

heap metadata 
protection
(902 LoC)

HyperSpace Implementation
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● 2 x Intel Xeon Silver 4116 processor (2.10 GHz)
● 128GB DRAM
● 12 Cores
● Fedora 28 Server Edition + Linux Kernel v5.0
● Compiled using LLVM SafeStack
● Linked with GNU gold v2.29.1-23.fc28

Performance/Memory evaluation with:
○ SPEC CPU 2006
○ NGINX (v1.14.2)
○ PostgreSQL

Security evaluation with:
○ 3 real-world exploits (CVEs)
○ 6 synthesized attacks

Evaluation setup
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● We evaluated HyperSpace with three real-world exploits and six synthesized attacks. 
These attacks demonstrate the effectiveness and versatility of HyperSpace.

Security Evaluation
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● Real-world exploits:
○ CVE-2016-10190 : Heap-based buffer overflow in ffmpeg.
○ CVE-2015-8668   : Heap-based buffer overflow in libtiff.
○ CVE-2014-1912   : Buffer overflow in Python2.7.
○ All prevented when using VIP-CFI/CPI, since exploit occurs on sensitive pointers.

● C++ VTPtr synthesized attacks:
○ CFIXX C++ test suite released by Burow et al (VTPtr hijacking attacks).
○ COOP attack.
○ All prevented using VIP-CFI/CPI protection since we protect the VTPtrs

● Synthesized heap attack: 
○ Overwrite inline metadata of an allocated heap memory during “unlink”; while removing 

a memory chunk.
○ HyperSpace’s heap metadata protection can defend this, since we write/assert 

the metadata during all malloc/free functions.



Heap Metadata Protection
- Average: 1.40%
- Median: -0.23%

HyperSpace

Runtime overhead of HyperSpace
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VIP-CFI + VTPtr
- Average: 1.02%
- Median: 0.23%

VIP-CPI
- Average: 6.35%
- Median: 0.67%



Optimizations
● INLN = DVI API inlining
● SS = SafeStack
● RNT = Runtime permission check
● CBB = Basic Block-level coalescing
● CFN = Function-level coalescing
● HGP = Huge Page

Impact of the optimization techniques
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HyperSpace

VIP-CPI
- Average: 15.47%
- Median: 5.88%

VIP-CFI+VTPtr
- Average: 14.42%
- Median: 5.27%

Memory overhead of HyperSpace
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● Could MPK be misused?

○ Because all MPK instructions, including wrpkru, are unprivileged 
instructions, if an attacker could subvert the control flow and change the 
MPK permission of the safe region to read-writable, then she is able to 
bypass HyperSpace defenses. 

○ However, such an attack is unfeasible if the control flow is protected by 
HyperSpace’s control flow hijacking defenses (e.g., VIP-CFI/CPI).

Discussion
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● Control Flow Integrity (CFI):
○ OS-CFI [1] incurs 7.1% and 𝜇CFI [2] incurs 9.9% performance overhead running SPEC 

CPU2006 Benchmark suite (while also requiring one dedicated CPU core for trace analysis).
○ VIP-CPI incurs less overhead (6.18%) while guaranteeing better security and does not 

require running additional threads for protection.
● Code Pointer Integrity (CPI):

○ CPI [3] suffers from reliance on information hiding to protect its safe region.
○ VIP’s optimized use of MPK solves this. We have several optimizations that reduce the 

performance overhead, and guarantee better security.
○ VIP also goes a step further by protecting heap metadata which is not considered in CPI.

● Object Type Integrity (OTI):
○ OTI [4] incurs 4.98% of performance overhead in the SPEC CPU2006 benchmark. 
○ VIP offers better performance as well as greater protection coverage. Our evaluation of 

VIP-CFI+VTPtr incurs only 0.88% of performance overhead.

Comparison with the state-of-the-art
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Conclusion
● Value Invariant Property (VIP) is a new defense policy that provides a 

versatile and elegant solution to thwarting memory corruption exploits.

● Our prototype, HyperSpace, enforces VIP to provide various security 
mechanisms with the strongest guarantee (VIP-CPI) having 6.35% 
runtime overhead and 15.47% memory overhead.

● Contributions:
○ VIP.
○ HyperSpace.
○ Optimization of HyperSpace.
○ Thorough evaluation of HyperSpace. 
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Thank You !


