
Enforcing C/C++ Type and Scope at Runtime for

Control-Flow and Data-Flow Integrity

Mohannad Ismail
Virginia Tech

Blacksburg, Virginia, USA

Christopher Jelesnianski
Virginia Tech

Blacksburg, Virginia, USA

Yeongjin Jang
Samsung Research America

Mountain View, California, USA

Changwoo Min
Igalia

Seoul, South Korea

Wenjie Xiong
Virginia Tech

Blacksburg, Virginia, USA

Abstract

Control-flow hijacking and data-oriented attacks are be-
coming more sophisticated. These attacks, especially data-
oriented attacks, can result in critical security threats, such
as leaking an SSL key. Data-oriented attacks are hard to de-
fend against with acceptable performance due to the sheer
amount of data pointers present. The root cause of such at-
tacks is using pointers in unintended ways; fundamentally,
these attacks rely on abusing pointers to violate the original
scope they were used in or the original types that they were
declared as.
This paper proposes Scope Type Integrity (STI), a new de-

fense policy that enforces all pointers (both code and data
pointers) to conform to the original programmer’s intent, as
well as Runtime Scope Type Integrity (RSTI) mechanisms to
enforce STI at runtime leveraging ARM Pointer Authenti-
cation. STI gathers information about the scope, type, and
permissions of pointers. This information is then leveraged
by RSTI to ensure pointers are legitimately utilized at run-
time. We implemented three defense mechanisms of RSTI,
with varying levels of security and performance tradeoffs
to showcase the versatility of RSTI. We employ these three
variants on a variety of benchmarks and real-world applica-
tions for a full security and performance evaluation of these
mechanisms. Our results show that they have overheads of
5.29%, 2.97%, and 11.12%, respectively.

ACM Reference Format:

Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Chang-
wooMin, andWenjie Xiong. 2024. Enforcing C/C++ Type and Scope
at Runtime for Control-Flow and Data-Flow Integrity . In 29th ACM
International Conference on Architectural Support for Programming

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651342

Languages and Operating Systems, Volume 3 (ASPLOS ’24), April 27-
May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3620666.3651342

1 Introduction

Control-flow hijacking and data-oriented attacks have be-
come more sophisticated in recent years. For example, at-
tacks such as DOP [44] and NEWTON [81] exploit data point-
ers to leak sensitive data, such as SSL keys, or achieve arbi-
trary code execution. These attacks bypass many state-of-
the-art defensemechanisms [6, 17, 25, 31, 35, 38, 39, 43, 50, 53,
56, 64–67, 77, 78, 80, 82, 85, 86]. Such data-oriented attacks
are more difficult to defend against as data pointers are much
more abundant in programs than code pointers. It is also not
easy to distinguish between security-sensitive data pointers
(e.g., pointing to an SSL key) and non-security-sensitive data
pointers. These attacks abuse pointers in unintended ways,
far from what was originally intended by the programmer.
Several defense mechanisms have been proposed to pro-

tect data pointers [21, 26, 40, 71]. However, they suffer from
reliance on programmer annotation, large dynamic meta-
data, partial protection (protecting only a subset of data
pointers), and/or high overhead. Reliance on programmer
annotation [72] makes it challenging to protect legacy pro-
grams. Moreover, the programmer may not accurately an-
notate everything, resulting in more possible bugs. Large
dynamic metadata [53] can be abused by an attacker to by-
pass defenses that heavily rely on metadata for enforcement.
More importantly, a creative attacker may abuse other non-
instrumented pointers to bypass the defense mechanism if
the program is only partially instrumented.
During a control-flow hijacking or data-oriented attack,

pointers are corrupted at runtime and the program behaves
anomalously, i.e., in a way that is not intended by the pro-
grammer. In C/C++ programs, variables have a specific type,
are valid inside a specific scope, and have specific permis-
sions. These are all restrictions imposed by the programmer.
We refer to these properties as the programmer’s intent.
However, at runtime, these restrictions are lost and are not
enforced in machine code. In a typical attack, the program-
mer’s intent is violated and the pointers are abused. As in

https://doi.org/10.1145/3620666.3651342
https://doi.org/10.1145/3620666.3651342

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

prior work, our design philosophy is to leverage the restric-
tions inherently defined in the source code at runtime, so
that the program can be executed with the proper program-
mer’s intent, leaving little room for attackers to manipulate
the program.

To this end, this paper proposes Scope-Type Integrity (STI),
a new defense policy that enforces pointers to conform to the
programmer’s intent, by utilizing scope, type, and permission
information. STI collects information at compile time about
the type, scope, and permission (read/write) of every pointer
in the program. This information can then be used at runtime
to enforce that pointers comply with their intended purpose.
This allows STI to defeat advanced pointer attacks since these
attacks typically violate either the scope, type, or permission.
We present Runtime Scope-Type Integrity (RSTI) mecha-

nisms. RSTI leverages ARM Pointer Authentication (PA) to
generate Pointer Authentication Codes (PACs), based on the
information from STI, and place these PACs at the top bits of
the pointer. At runtime, the PACs are then checked to ensure
pointer usage complies with STI. In this way, pointers are
guaranteed to execute conforming to the programmer’s in-
tent expressed in the application. This allows integrity checks
to be performed without needing much external metadata
and provides high-security guarantees against creative at-
tacks. Also, leveraging ARM PA allows runtime checks to
be efficient, thus opening the way to efficiently and securely
protect all pointers in a program. We introduce RSTI-STWC
(Scope-Type without Combining), which is our main RSTI
mechanism. RSTI-STWC protects all pointers (both code and
data pointers) in a program and re-signs pointers whenever
a cast happens so that the type semantics of the program
can still be conformed to. We further introduce two variants
of RSTI-STWC: RSTI-STC (Scope-Type with Combining), a
relaxed version of RSTI-STWC, and RSTI-STL (Scope-Type
with Location), a stricter version of RSTI-STWC. With these
three mechanisms, we are able to show the variety of trade-
offs between security and performance of RSTI. We also
describe the precision of the enforcement of each mecha-
nism and the security implications of the design decisions
of each mechanism. We use the term Equivalence Class to
quantify the protection precision. Equivalence Class here
measures how unique each pointer type or variable is in the
program, and this quantifies how viable pointer substitution
attacks can be within an application. To this end, we make
the following contributions:

• We introduce a new defense policy, Scope-Type Integrity
(STI), that enforces pointers to conform to the program-
mer’s intent. It leverages scope, type, and permission in-
formation expressed in the source code to be used after it
has been lost during compilation. To our knowledge, STI is
the first of its kind to defend against pointer-based attacks
by hardening the programmer’s intent into machine code.

• We propose Runtime Scope-Type Integrity (RSTI), effi-
cient enforcement of STI using ARM’s Pointer Authen-
tication (PA). We introduce three RSTI mechanisms, RSTI-
STWC, RSTI-STC, and RSTI-STL, that instrument all point-
ers (both code and data pointers) with different restrictions,
showing a trade-off between security guarantees and per-
formance overhead.

• We prototype all three RSTI mechanisms on the LLVM
compiler, and demonstrate the feasibility of the proposed
schemes on a commercial processor.

• We provide a comprehensive security evaluation of RSTI
and its mechanisms on state-of-the-art control-flow hijack-
ing and data-oriented attacks, and real-world CVEs.

• We evaluate RSTI’s mechanisms on a variety of bench-
marks and real-world programs, including SPEC CPU 2006,
SPEC CPU 2017, nbench, NGINX and CPython PyTorch,
with average overheads of 5.29%, 2.97%, and 11.12% for
RSTI-STWC, RSTI-STC and RSTI-STL, respectively.

2 Background and Motivation

2.1 Control-flow Hijacking

Control-flow hijacking attacks are critical because they
may allow attackers to run arbitrary code. A popular way to
carry out a control-flow hijacking attack is exploiting mem-
ory corruption vulnerabilities, which C/C++ programs are
prone to having. In particular, attackers can alter the value
of a code pointer (e.g., function pointers) by corrupting the
memory location that stores the pointer to subvert execution
flow of a program [14, 15, 20, 28, 34, 37, 74].

The control-flow hijacking attack in Figure 1 shows a vul-
nerability (CVE-2015-8668) in the libtiff library. This is

1 int TIFFWriteScanline(TIFF* tif, ...){
2 ...
3 // Function pointer dereference
4 // Arbitrary address
5 // Execute attack!!
6 status = (*tif->tif_encoderow)(tif, (uint8*) buf,
7 tif->tif_scanlinesize, sample); }
8 void _TIFFSetDefaultCompressionState(TIFF* tif){
9 // Function pointer assignment
10 tif->tif_encoderow = _TIFFNoRowEncode; }
11 TIFF* TIFFOpen(...){
12 ...
13 _TIFFSetDefaultCompressionState(tif);}
14 int main(int argc, char* argv[]){
15 TIFF *out = NULL;
16 out = TIFFOpen(outfilename, "w");
17 ...
18 uint32 uncompr_size;
19 unsigned char *uncomprbuf;
20 ...
21 uncompr_size = width * length;
22 // Unsanitized Code - Buffer overflow
23 uncomprbuf = (unsigned char *)_TIFFmalloc(
24 uncompr_size);
25 ...
26 if (TIFFWriteScanline(out, ...) < 0) {}
27 ...}

Figure 1. Control-flow hijacking attack example. The attacker can
exploit the buffer overflow vulnerability in Line 21.

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1 int serveconnection(int sockfd) {
2 char *ptr;
3 ...
4 if (strstr(ptr, "/..")) // Reject the request
5 log(...); // Buffer overflow!
6 ...
7 if (strstr(ptr, "cgi-bin") // Handle CGI request
8 ... }

Figure 2. Data-oriented attack example. The attacker corrupts ptr
in Line 4 to bypass the security checks.

a heap-based buffer overflow. The program does not sani-
tize the buffer size in Line 21. This means that uncomprbuf
can be too small, allowing the attacker to overflow heap
memory. A possible target is tif_encoderow, which is called
by TIFFWriteScanline. The attacker can then overwrite
tif_encoderowwith an arbitrary address that they can jump
to when the function pointer gets dereferenced.

2.2 Data-Oriented Attack

Data-oriented attacks aim to corrupt non-control data
pointers in order to maliciously leak information [23, 44] or
achieve arbitrary code execution. These attacks are much
more powerful than control-flow hijacking attacks, due to the
fact that they do not touch any control data. They have been
used, for example, to leak an SSL key [33, 44]. They are harder
to defend against due to the abundance of data pointers in a
program and the inability to distinguish security-sensitive
data pointers from non-security-sensitive data pointers.

Figure 2 shows an attack against the GHTTPD web server
[24]. In this attack, the attacker relies on corrupting the
pointer ptr. They send an HTTP request with a crafted URL.
Then, they trigger the buffer overflow vulnerability in log()
and overwrite the address in pointer ptr to the address of the
crafted URL. This crafted URL allows the attacker to bypass
the input validation checks in Lines 4 and 7, and the attacker
executes /bin/sh. Manipulating data pointers is often the
desired attack vector for data-oriented attacks [26].

2.3 Scope, Type, and Permission in C/C++

When a programmer writes a C/C++ program, each defined
variable has a few properties. Some of these are:
• Basic Type: Each variablemust have a specific type, e.g., ch
ar, int*. This type is defined by the programmer to tell the
compiler how this variable will be used in the program.

• Scope: Scope defines where the variable will be used. For
example, in Figure 2, the pointer ptr’s scope is the function
serveconnection, and should not be used outside that.

• Permission: We refer to permissions as whether a variable
is defined as read or read/write. A programmer usually
defines this by using const in the variable definition.

These three properties express what we refer to as the pro-
grammer’s intent for the usage of variables. However, such in-
formation is lost after compilation. Thus, an attacker can eas-
ily weaponize pointers without conforming to their proper

Cryptographic Hash
(e.g., QARMA)

Secret
Key

Modifier
(64 bits)

Address

AddressPAC

AddressPAC

(a) PAC signing (b) PAC authentication

Cryptographic Hash
(e.g., QARMA)

Secret
Key

Modifier
(64 bits)

Address

Figure 3. PA mechanism signs a pointer and produces a Pointer
Authentication Code (PAC) based on the pointer, a user-provided
modifier, and a secret key.

usage. STI aims to analyze the program and retrieve this
information. Then, this information is passed to RSTI to en-
force the policy at runtime with ARM PA. Note that STI
only concerns itself with pointer variables, since this is the
variable type that is usually manipulated by attackers.

2.4 ARM Pointer Authentication

We leverage the Pointer Authentication feature in ARM to
enforce RSTI. ARM introduced Pointer Authentication (PA)
in ARMv8.3-A [45] and is available in commercial machines.
PA is a hardware security feature that aims to protect the
integrity of pointers. It does this by generating a Pointer
Authentication Code (PAC) with a cryptographic hash al-
gorithm. For signing, the algorithm takes a pointer, a 64-bit
modifier, and a secret key. It then generates a PAC that is
placed at the top unused bits of the pointer, as shown in Fig-
ure 3(a). For authentication, the algorithm takes the PAC’ed
pointer, as well as the same modifier and key. The PAC is
then recalculated and checked with the PAC on the pointer.
If they match, the PAC is removed, as shown in Figure 3(b).
If they do not, the top two bits of the pointer are flipped,
causing the pointer to be unusable. PA has pac instructions
for signing pointers and aut instructions for authenticating.
We leverage PA in RSTI to enforce scope, type, and per-

mission. RSTI instruments all pointer loads/stores with PA
instructions (pac/aut), leveraging LLVM’s pointer authen-
tication intrinsics (llvm.ptrauth) [2]. llvm.ptrauth.sign
and llvm.ptrauth.auth take three arguments:
• pointer address: This is the raw pointer to be signed or
authenticated.

• key: This is an integer identifying which key will be used.
• modifier: a 64-bit integer that adds additional diversity to
the PAC.

3 Threat Model and Assumptions

We follow a threat model of typical memory-corruption at-
tacks [76]. The attacker’s goal is to achieve arbitrary code
execution or memory access by hijacking control/data flow
by abusing a memory corruption vulnerability. RSTI does
not prevent corruption of pointers but rather prevents an
attack from achieving code execution stemming from arbi-
trary read/write that can result from abusing pointers. We
assume that Data Execution Prevention (DEP) is in place,

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

and thus the attacker cannot inject their own code. DEP
is now enabled by default in most modern operating sys-
tems [49, 61]. Also, we trust the hardware and the kernel;
more specifically, we trust that PA keys are securely gen-
erated, managed, and stored by the kernel. In addition to
that, we also assume a return address protection mechanism,
such as shadow stack or an equivalent mechanism [5, 10], is
implemented. Attacks that target the kernel and hardware,
such as transient execution attacks [52, 68], are out of scope.

4 Runtime Scope-Type Integrity (RSTI)

4.1 Design Goals

The main goal of RSTI is to protect all pointers in a program
from memory corruption attacks. This puts RSTI in a po-
sition similar to Data Flow Integrity (DFI) [22] and other
similar techniques [26, 47, 55]. Some techniques that protect
data pointers are limited by their reliance on programmer
annotation [71]. Other mitigation techniques [47, 53] rely
on external metadata in memory. This causes high overhead,
due to the abundance of data pointers, and exposes the meta-
data to an attacker. Thus, in designing RSTI, we wanted to
overcome these challenges. In summary, our main goals are:
• Completeness: Protection of all pointers (both code and
data pointers) in a program.

• Little reliance on external metadata: Eliminate meta-
data lookup overhead and attacks on the metadata.

• High performance: Keep runtime overhead low.
• Compatibility: Allow protection of legacy (C/C++) pro-
grams without needing programmer annotations.

4.2 Design Philosophy

The goal of the defense mechanisms is ensuring correct and
proper execution of a program. Even though a program-
mer puts significant effort and information into writing a
program to ensure it executes in the desired way, all this
information is, unfortunately, lost at runtime. So why not
leverage this information as the security context, and propa-
gate it to the runtime in some way? If we can ensure that the
program executes in the way that the programmer intended
even when an attacker is present, then the program would
not be compromised, since an attacker relies on the anoma-
lous execution of a program by exploiting vulnerabilities.
By programmer’s intent, we refer to the various program-
ming constructs that are used by the programmer to write
the program. However, these constructs need to be carefully
chosen, in order to guarantee enough uniqueness for the
security context between different pointers. We identified
three main vital pieces of information that are defined by a
programmer to execute the program correctly: scope, type,
and permission (defined in §2.3). The anomalous execution
of a program is the main primitive relied on by attacks such
as Return Oriented Programming (ROP) [70]. In addition,

defending against anomalous execution of programs by en-
forcing intent is the main goal of defense techniques such
as CFI [6], CPI [53], DFI [22] and other defense mechanisms
[18, 43, 50, 75]. CFI guarantees the transfer of control flow
to a valid destination, represented by a Control Flow Graph
(CFG) and labels. RSTI leverages the STI information for
anomalous detection, and we show the practicality and ef-
fectiveness of it against a wide variety of attacks. Below, we
show how to defend against a control-flow hijacking attack
and data-oriented attack, in Figures 1 and 2, respectively.
Defending control-flow hijacking. For the control-flow
hijacking attack in Figure 1, if we can enforce that the pointer
tif->tif_encoderow conforms to its type (TIFFCodeMethod)
and its scope (TIFFWriteScanline and _TIFFSetDefaultComp
ressionState), then the attacker would not be able to over-
write it with an arbitrary pointer. The attacker wouldn’t even
be able to use another valid pointer in the program if it does
not meet these restrictions.
Defending data-oriented attacks. By enforcing scope,
type, and permission, the attacker cannot easily overwrite
the data pointer ptr in Figure 2. The attacker can only cor-
rupt the pointer with an alternative pointer of the same type
(char*) and the same scope (serveconnection). This reduces
the attack vector significantly.

4.3 Design Overview

RSTI aims to protect all pointers from being abused by en-
forcing Scope-Type Integrity (STI) at runtime. STI ensures
that pointers are dereferenced from the correct scope, with
the correct type and abide by the correct permissions. If an
attacker corrupts a pointer, they cannot manipulate the PAC
to bypass authentication. This allows RSTI to enforce the
programmer’s intent without relying on extra annotation.

Figure 4 shows the overall design of RSTI. At compile time,
all pointers in the source code are instrumented depending
on which RSTI mechanism is chosen. The RSTI compiler
collects and analyzes all the LLVM debug information to
generate compiler metadata. This metadata is then used by
LLVM ptrauth intrinsics to generate the protected binary
with PAC instructions. At runtime, ARM PA is used to effi-
ciently enforce STI.

4.4 Scope, Type, and Permission

Programmer’s intent on pointer properties. STI uses
type, scope, and permission information as the programmer’s
intent to enforce protection. Such information can be col-
lected at compile time. We show that STI is secure enough to
ensure that a program executes as the programmer intended
in §6.1.
• Basic Type: Enforcing the type at runtime allows the pro-
gram to interpret a raw address in the intended way. This
is a useful security context since many attackers rely on
type-confusion. Type-confusion here means illegal type

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Identify all LLVM
debug instructions

Source
Code

Protected
Binary

Pointer to
Pointer Library

(compiler-rt)

Compile Time Runtime

Compiler
metadata PAC Instructions

pacda, autda, etc. C
lan

g

Generate metadata
with STI information

Instrument
all pointers

Instrument pointers-
to-pointers

1 // C code
2 int main(void){
3 const void *cp = malloc (sizeof(void));
4 }
1 //LLVM IR
2 %2 = alloca i32*, align 8
3 call void @llvm.dbg.declare(
4 metadata i32** %2, // Type
5 metadata !13, !dbg !16
6 %3 = call i8* @malloc(i64 1) #3, !dbg !17
7 %4 = bitcast i8* %3 to i32*, !dbg !17
8 store i32* %4, i32** %2, align 8, !dbg !16
1 // LLVM IR debug info
2 !9 = distinct !DISubprogram(name: "main", scope: !6,
3 file: !6, line: 14, type: !10, scopeLine: 15
4 !13 = !DILocalVariable(name: "cp", scope: !9,
5 file: !6, line: 16, type: !14) // Scope
6 !14 = !DIDerivedType(tag: DW_TAG_pointer_type,
7 baseType: !15, size: 64)
8 !15 = !DIDerivedType(tag: DW_TAG_const_type,
9 baseType: !12) // Permission
10 !16 = !DILocation(line: 16, column: 13, scope: !9)

Figure 4. Overview of RSTI. Starting with the source code, RSTI compiler identifies the scope-type information, generates the metadata, and
instruments all pointers. The metadata is static and only used during the compilation phase. The code snippet on the right shows how the
scope, type, and permission information is identified by RSTI through the llvm.dbg information.

confusion, in which an attacker replaces a pointer of one
type with a pointer of another incorrect type. By incor-
rect type, we mean against the programmer’s intent. If a
cast is in the code, it is considered correct from RSTI ’s
perspective.

• Scope: Enforcing the scope at runtime allows the use of a
pointer variable to be bound to a certain subset region of
program code. Our definition of scope extends the "scope"
in the C language to also consider composite types. In
the case of function scopes, it is the set of functions that
use the variable. For example, a programmer may define
a variable void* p to be used in a function foo(). Thus,
the scope of p is foo. This specific example is for a local
variable. If the variable escapes, i.e., it is used in other
functions, then the scope is widened to these other func-
tions. If there is a compound statement in a function, that
does not constitute a new scope. In the case of composite
types, such as structures, the structure itself is included
in the scope. For example, if a struct bar has a member
variable void* a, then bar is also included in the scope
of a. In the case of nested structs, the scope is assigned
iteratively for the pointers to the variable. For example, if
a struct foo contains a struct bar and struct bar has
a variable void* a, then the scope of a would only include
struct bar, and the scope of the pointer to struct bar
would include struct foo.

• Permission: Enforcing the permission at runtime allows
read-only variables to not be abused by an attacker with
read/write variables.

Extracting scope, type, and permission from LLVM IR.

LLVM’s Intermediate Representation (IR) allows us to obtain
all of the scope-type information with LLVM’s IR metadata.
LLVM generates llvm.dbg instructions, that can be used to

access the metadata of the variable. STI uses these instruc-
tions to initialize the internal static metadata with the scope,
type, and permission information. Figure 4 (right) shows a
code snippet from a C program and the corresponding LLVM
debug metadata. The variable cp is defined with a type of
void*. Its scope is the function main. It has read-only permis-
sions, due to being const. The type information is in Line 4 of
the LLVM IR, which is the i32* type. The scope information
is initially obtained from the instruction !13 by traversing
the llvm.dbg instruction, to get to the !DILocalVariable.
When instrumenting loads/stores, the scope is obtained with
the !16 instruction and every load/store has this LLVMmeta-
data. Thus, this means the proper scope can always be ob-
tained. Permission information requires further traversal of
the !DILocalVariable to reach !DIDerivedType. There are
multiple layers of !DIDerivedType metadata and we check
their tags to find the DW_TAG_const_type tag. This specific
tag denotes that this variable is read-only. Scope-type infor-
mation is then stored in internal compile-time metadata.
Pointer Casting. C/C++ semantics allow types to be cast
from one type to another. Thus, those two types become
compatible, since it is explicitly done by the programmer
or by the compiler. If a pointer gets cast from one type to
another, then we define these types as compatible types.

4.5 RSTI-types

We define RSTI-type as a pointer type which restricts a
pointer to conform to the scope-type information. If a pointer
does not have the intended RSTI-type, RSTI will detect that
the pointer has been tampered with. For example, the table
in Figure 5a shows two RSTI-types (M2 andM3) for one basic
type (void*), due to the fact that there are two void* vari-
ables that have different scopes and different permissions.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

1 // key = 2 (for pacda/autda)
2 typedef struct{ void (*send_file)(
3 int x); } ctx;
4 void foo2(void* v_ctx){
5
6 // llvm.ptrauth.auth(v_ctx, 2, M2);
7 // llvm.ptrauth.sign(v_ctx, 2, M1);
8 foo((ctx*) v_ctx);
9 // llvm.ptrauth.auth(v_ctx, 2, M2);
10 // llvm.ptrauth.sign(v_ctx, 2, M1);
11 bar((ctx*) v_ctx); }
12 int main(){
13 ctx* c = malloc(sizeof(*c));
14 // llvm.ptrauth.sign(c, 2, M1);
15
16 const void* v_const = malloc(sizeof(
17 void));
18 // llvm.ptrauth.sign(v_const, 2, M3);
19 // llvm.ptrauth.auth(c, 2, M1);
20 // llvm.ptrauth.sign(c, 2, M2);
21 foo2((void*) c);
22 ... }

1 // key = 2 (for pacda/autda)
2 typedef struct{ void (*send_file)(
3 int x); } ctx;
4 void foo2(void* v_ctx){
5
6
7
8 foo((ctx*) v_ctx);
9
10
11 bar((ctx*) v_ctx); }
12 int main(){
13 ctx* c = malloc(sizeof(*c));
14 // llvm.ptrauth.sign(c, 2, M1);
15
16 const void* v_const = malloc(sizeof(
17 void));
18 // llvm.ptrauth.sign(v_const, 2, M2);
19
20
21 foo2((void*) c);
22 ... }

1 // key = 2 (for pacda/autda)
2 typedef struct{ void (*send_file)(
3 int x); } ctx;
4 void foo2(void* v_ctx){
5 // M2 = M2 ^ &v_ctx
6 // llvm.ptrauth.sign(v_ctx, 2, M2);
7 // llvm.ptrauth.auth(v_ctx, 2, M2);
8 foo((ctx*) v_ctx);
9
10 // llvm.ptrauth.auth(v_ctx, 2, M2);
11 bar((ctx*) v_ctx); }
12 int main(){
13 ctx* c = malloc(sizeof(*c));
14 // M1 = M1 ^ &c
15 // llvm.ptrauth.sign(c, 2, M1);
16 const void* v_const = malloc(sizeof(
17 void));
18 // M3 = M3 ^ &v_const
19 // llvm.ptrauth.sign(v_const, 2, M3);
20 // llvm.ptrauth.auth(c, 2, M1);
21 foo2((void*) c);
22 ...}

Type Scope Permission

RSTI

Type

ctx* main,foo,
bar,foo2 R/W M1

void* foo2 R/W M2
void* main R M3

(a) RSTI-STWC

Type Scope Permission

RSTI

Type

ctx*,
void* main,foo2 R/W M1

void* main R M2

(b) RSTI-STC

Type Scope Permission

RSTI

Type

ctx* main R/W M1
void* foo2 R/W M2
void* main R M3
ctx* foo R/W M4
ctx* bar R/W M5

(c) RSTI-STL

Figure 5. Code examples with instrumentation. The table below each snippet shows how the RSTI-type is internally stored.

Distinguishing between local and escaping variables.

RSTI-type also distinguishes between variables that are local
to a function versus variables that escape. The local variable’s
scope would only have the one function it is in, compared
to an escaping variable’s scope would include all functions
it is used in, e.g., M1 in the table in Figure 5a. The function
isNonEscapingLocalObject in LLVM helps RSTI with this
distinction. This allows RSTI to be precise in its enforcement,
whilst maintaining correctness of the program. We clarify
the RSTI-type with examples and explain the different RSTI
defense mechanisms in the next section.

4.6 Enforcement and Defense Mechanisms

RSTI instruments all pointer load/store instructions and en-
forces RSTI-type with PAC. RSTI instruments all pointers on
the stack and heap, including globals. RSTI decides the scope
based on where that pointer is legitimately defined and used
in the program. The RSTI-type is included in the modifier
that is passed to the cryptographic algorithm. Any change
in any one of the components means that a different PAC
will be generated, and thus will fail on authentication. This
mechanism allows STI’s restrictions to be enforced at run-
time. RSTI supports uninstrumented libraries by stripping
the PAC when an external library call is made.
We propose three RSTI defense mechanisms, each with

its own distinct view of the RSTI-type. RSTI’s three security
mechanisms have different security guarantees due to the
different nature and strictness each mechanism has to offer.

RSTI-STWC (Scope-Type Without Combining) is our
main RSTI mechanism. RSTI-STWC authenticates and re-
signs pointers when casts happen. For example, in Figure 5a,
there are two basic types in the program (void* and ctx*).
Due to RSTI-STWC’s analysis considering scope and per-
mission, there are now three RSTI-types. Even though there
is a cast between void* and ctx*, RSTI-STWC maintains
separate RSTI-types for them. RSTI-STWC makes sure that
legitimate casts are handled by re-signing the PAC with the
RSTI-types after casting, as in Lines 19-21 in Figure 5a. How-
ever, RSTI-STWC would not be able to detect if two pointers
with the same scope-type information are substituted.
RSTI-STC (Scope-Type with Combining) combines com-
patible types together so that it does not need to re-sign
pointers when pointer casts happen. For example, in Fig-
ure 5b, ctx* and void* are combined into one RSTI-type,
and thus there is no need for additional instrumentation to
handle them. The viability of a pointer substitution attack de-
pends on whether the scope-type information of the pointers
being substituted are both compatible or not. If they are not
compatible, then RSTI-STC can detect the attack. If they are,
then RSTI-STC falls short here. RSTI-STC has less security
guarantees but offers better performance. This is discussed
in detail in §6.
RSTI-STL (Scope-Type with Location) is the strictest
RSTI defense mechanism. It combines the location, i.e., ad-
dress, of the pointer with the scope-type information to
completely prevent any pointer substitution attacks. In addi-
tion to instrumenting casts, RSTI-STL re-signs any pointers

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

that get passed as arguments, due to a change in the location
of the pointer. RSTI-STL includes the location of a pointer p
(&p) in the modifier. This means that the pointer can only be
used legitimately at that specific location [47]. Anytime the
location of the pointer changes, RSTI-STL authenticates and
re-signs within the new location. This allows it to overcome
the shortcomings of the others, albeit at a higher perfor-
mance cost due to a higher number of instrumentations.
Precision of the protection A replay attack is where an
attacker maliciously reuses pointers with the same PAC in a
different context. As can be seen in Figure 5, each mechanism
enforces different security guarantees against this attack.
This means that the precision of enforcement of each mech-
anism is different. For example, since RSTI-STC combines
compatible RSTI-types, more pointers would have the same
RSTI-type. This increases the likelihood of replay attacks.
However, RSTI-STWC and RSTI-STL do not combine RSTI-
types and have higher precision than RSTI-STC. PARTS [55]
uses the pointer’s basic type as the modifier, which can be
reused maliciously by an attacker [47]. RSTI’s mechanisms
rely on more than the basic type and thus have more preci-
sion in general than PARTS. We elaborate on this in §6.2.1.

4.7 Enforcement Details

4.7.1 On-Store Pointer Signing. RSTI instruments all
pointer stores in a program. They are all signed with their
respective RSTI-type as the modifier. Thus, all pointers in
a program always have a PAC on them and are always pro-
tected. For example, Line 14 in Figure 5a.

4.7.2 On-Load Pointer Authentication. RSTI authenti-
cates pointers as they are loaded from memory, using the
same RSTI-type that was used to sign them on-store. The
LLVM pointer authentication intrinsics allow authentication
to happen without spilling to memory, due to them being
optimized in the compiler. This means that we do not need to
re-sign pointers after authentication, since the compiler op-
timizes the memory accesses and the authenticated address
is always in a register. For example, Line 19 in Figure 5a.

4.7.3 PointerOperations. Due to the fact that PAC changes
pointer semantics, care must be taken when instrumenting
pointers in a program.
Universal pointer types. Universal pointer types such
as void* and char* are abundant in C/C++ programs. RSTI
treats them just as it would treat any other type. This allows
for consistent instrumentation across programs that may
have their own types that are abundant as well.
Pointer Arithmetic. RSTI supports pointer arithmetic oper-
ations. However, RSTI-STWC and RSTI-STC are not capable
of enforcing bounds on a pointer. RSTI-STL adds the location
of the pointer to the modifier and is able to enforce correct
pointer arithmetic without needing bounds. The location of
the pointer is determined by the address of the pointer, and

1 void hello_func(){printf("Hello!"); }
2 struct node {
3 int key;
4 int (*fp)();
5 struct node *next; };
6 int main(void){
7 struct node* ptr = (struct node*)
8 malloc(sizeof(struct node));
9 ptr->fp = hello_func;
10 ptr->fp(); }

Figure 6. Composite type example. RSTI handles composite types
and enforces the scope of its members to that type.

this value doesn’t change even when the pointer is incre-
mented or decremented.

4.7.4 Field Sensitive Analysis. RSTI does field-sensitive
analysis on composite type variables in order to achieve
finer-grained and accurate enforcement of the programmer’s
intent. RSTI handles members of a composite type and as-
signs the scope and type appropriately. Figure 6 shows an
example of a variable ptr, which is of type struct node*
and its scope is main. Its member variable, fp, has a type of
int *() but its scope is both main as well as struct node.
RSTI enforces that the ptr->fp() has the proper scope in
terms of the functions it is executed in, as well as its com-
posite type. Note that composite types can act as both scope
and type, depending on which pointers are being referred.

As for composite types, LLVM identifies them in the debug
metadata. Every struct type has a !DICompositeType in the
LLVM IR. This allows RSTI to distinguish composite types
from other types that use the !DIDerivedType. Enforcing the
scope and type on struct pointer members is twofold. First
is using the actual type the member is defined in. The actual
type is represented in IR. The second is enforcing the struct
type where the pointer is a member. This is done by accessing
the GEP (getelementptr) instruction. Struct members are
accessed in IR with the GEP instruction, and this can be used
to get the struct type and reach the !DICompositeType to
enforce the struct type.

4.7.5 Type Punning and Inheritance. Type punning is
a form of pointer aliasing in which two pointers refer to the
same location in memory but they represent that location as
different types. One of the ways in which this is done in C
code is through casting. RSTI handles type punning to make
sure that each pointer has a PAC corresponding to its correct
type. This is done by detecting the BitCast instruction in
the LLVM IR, and subsequently finding the corresponding
RSTI-type for the variable. The pointers are authenticated
and re-signed in the case of RSTI-STWC, and RSTI-types
are combined in the case of RSTI-STC. Inheritance in C++ is
where a base class pointer can be used to access objects in
a child class. The base class and child class are considered
to be of different types. Even though there are no explicit
casts being done in the code, the LLVM IR emits BitCast
instructions whenever a base class accesses functions in the

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

child class. This allows inheritance to be handled in a manner
similar to type punning.

4.7.6 Protection ofHeapVariables. RSTI’s compile-time
analysis extracts the scope, type, and permission for all point-
ers and instruments all the pointer load/store instructions
on both the stack and heap. From the IR’s perspective, heap
access is just another memory access, and the pointers that
access the heap objects have their scope-type information in
the IR. RSTI does not track the lifetime of the pointer. RSTI
utilizes the scope-type information to make sure that this
heap object is accessed by a legitimate function, in a legiti-
mate scope, and with legitimate permissions. Accessing the
heap is done in one of three ways: through a global variable, a
local variable, or a pointer embedded in the heap object. Our
field-sensitive analysis, explained in §4.7.4, accommodates
these and showcases how RSTI utilizes the scope-type infor-
mation to guarantee correct access. An example of that is
in Figure 6, where ptr is a pointer of type struct node that
points to a heap object, and its scope is the function main.
Its member variable, fp, has a type of int *(). However,
its scope is both main and struct node. RSTI enforces that
ptr->fp() has the proper scope in terms of the functions it is
executed in, as well as its composite type. This field-sensitive
analysis allows the embedded pointer in a struct to have the
proper scope-type information.

4.7.7 Pointer-to-Pointer handling. Due to reliance on
the RSTI-type when signing/authenticating pointers, we
must make sure that the correct types are being used and
propagated. For single pointers, this is not an issue. However,
for a pointer-to-pointer, this can be an issue. When a double
pointer is type-casted and passed as a function argument, the
original type of the pointer can be lost. Thus, we need to find
a way to preserve the original type of the pointer in order to
make sure that it does not violate the programmer’s intent.
Our solution is to store the original type on the pointer itself.
However, the number of bits on the pointer that are available
(8 bits in case of ARMv8) is limited. We resolve this by adding
an extra step of indirection. We define a tag that gets added
to the top bits and that leads us to the full original type along
with its modifier from the RSTI-type. The tag and the full
original type are referred to as the Compact Equivalent (CE)
and Full Equivalent (FE), respectively.

Figure 7 shows how the mechanismworks. Functions foo1
and foo2 take &p, a pointer-to-pointer, as an argument. For
foo1, the same basic type (struct node) is in the argument
and thus the pointer-to-pointer mechanism is not needed.
However, for foo2, the type is void**. In this case, the origi-
nal type (struct node**) is lost and thus the mechanism is
needed. Thus, our pointer-to-pointer solution resolves this
by storing a tag (CE) that refers to the original type (FE) on
the top 8 bits of the pointer. The CE and FE are also both
stored in read-only metadata in memory and can only be
accessed by the pointer-to-pointer library in compiler-rt.

1 void foo1(struct node** pp1){... }
2 void foo2(void** pp2){
3 //pp_auth(pp2, pp2_CE);
4 ...}
5 int main(){
6 struct node* p = (struct node*)
7 malloc(sizeof(struct node));
8 foo1(&p); //Not instrument with pointer-to-pointer mechanism
9 //pp_add(&p,pp2_CE);
10 //pp_sign(&p, pp2_CE);
11 //pp_add_tbi(&p, pp2_CE);
12 foo2(&p); //Instrument with pointer-to-pointer mechanism
13 ... }

AddressPACCE

AddressPAC

pp2

p

CE FE

1 struct node**

......

Metadata Store

AddressPAC

pp1

Figure 7. Pointer-to-pointer handling to preserve the original type.
The Compact Equivalent (CE) and Full Equivalent (FE) refer to a
tag and the original type of the pointer-to-pointer, respectively.

To implement this, RSTI makes use of an ARMv8 hardware
feature called Top Byte Ignore (TBI) [12]. TBI is a feature
that ignores the top 8 bits of a virtual address.
Usage. Not all pointer-to-pointer types need to be covered.
Only ones that are lost when the pointer type goes out of
scope, (e.g., being cast and passed as a function argument)
and thus cannot be statically detected. While there are dif-
ferent pointer-to-pointer scenarios, few pointer-to-pointers
fall into this specific category. The IR provides sufficient in-
formation to handle pointer-to-pointer cases that do not fall
into this category. Thus, we do not need to instrument every
pointer-to-pointer with this mechanism. Since the CE can
only be 8 bits, this means that only 256 types can be used.
We evaluate the usage of our mechanism in §6.2.2.
Enforcement. RSTI checks for all instances where a pointer-
to-pointer is being cast and then passed as a function argu-
ment. Then, the CE and FE are obtained, added to the table,
and the pointer is signed with a PAC based on its RSTI-type
and based on the CE. When authenticating a pointer-to-
pointer, RSTI checks to see if that RSTI-type exists. Then,
RSTI uses the CE to obtain the modifier for the original type
from the table in memory. In this way, the original type of
the pointer can be obtained and authentication can be done.
The main goal of the pointer-to-pointer mechanism is to

preserve the original type the pointer was being casted from,
and thus the mechanism can support any level of indirec-
tion. So, for example, if a struct node*** pointer was cast
to a void* and passed as a function argument, the FE would
store the original type as struct node*** in the metadata
and place the corresponding CE on the pointer. Thus, the
original type can always be inferred regardless of the casted
type. The same thing would happen if a struct node** was
cast to a void*. If a struct node** was cast to a void* and

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

then stored in another struct, the pointer will be authenti-
cated and re-signed with the proper struct composite type,
due to the existence of a BitCast instruction and a store
instruction. We have not had any issues pertaining to this
in our evaluation. RSTI uses a runtime library to handle
pointer-to-pointer. Its functions are:
• pp_add: This is called when a casted double pointer func-
tion argument is detected. It adds the FE to the metadata
along with its modifier from the internal compiler meta-
data (Line 9 in Figure 7).

• pp_sign: This is called before a store of a casted double
pointer function argument. It signs the pointer with a PAC
based on the RSTI-type and metadata (Line 10 in Figure 7).

• pp_auth: This is called before a load of a signed casted
double pointer. It authenticates that pointer with the RSTI-
type and the original type obtained from the metadata
(Line 3 in Figure 7).

• pp_add_tbi: This is called after pp_sign. It adds the CE to
the top bits of the pointer so that the the original type can
be obtained when pp_auth is called (Line 11 in Figure 7).

4.8 Merging of Compatible Types for Casting

Depending on which mechanism is used and the pointer
casts, different RSTI types can be combined or merged to-
gether. This is showcased in Figure 8. There are two ba-
sic types, void* and int*, but each RSTI mechanism distin-
guishes between them depending on the code. RSTI-STC
merges types if there is a cast (Line 5), and thus both ba-
sic types would have one RSTI-type under RSTI-STC. RSTI-
STWC doesn’t merge types with casts. However, since p1 and
p2 have the same scope, type, and permission, they both will
have one RSTI-type. RSTI-STL adds the location, and this
allows it to distinguish p1, p2, and p3 with three RSTI-types.
This distinction directly affects the number of instrumenta-
tions for each mechanism.

5 Implementation

Our prototype is built on top of Apple’s LLVM fork [1]. It
consists of 3,504 lines of code (LoC), with 3,017 LoC for the
LLVM pass and 487 LoC for the pointer-to-pointer library.
This includes all three mechanisms. The pointer-to-pointer
library is integrated into LLVM’s compiler-rt. The LLVM
pass executes on the IR level but is in the AArch64 backend.
RSTI is available at: https://github.com/cosmoss-jigu/rsti.

We apply a few optimizations to RSTI. First, is Link Time
Optimization (LTO), which combines all the object files into
one file. Also, we inline all the pointer-to-pointer library
functions and we execute the pass in the LTO phase. This
allows RSTI to avoid unnecessary instrumentation.
Executing the pass in the LTO phase, particularly after

all the object files have been combined into one, is not only
beneficial for performance reasons, but is important to help
RSTI function properly and efficiently. Being able to have

1 void foo(){
2 void *p1, *p2;
3 int* p3;
4 ...
5 p1 = (void*) p3;
6 ...}

RSTI-STWC RSTI-STC RSTI-STL

p1 and p2

Merges RSTI-type
of p1 and p2

Merges RSTI-type
of p1 and p2

Doesn’t
merge

p1 and p3

Doesn’t
merge

Merges RSTI-type
of p3 with p1 and p2

Doesn’t
merge

Figure 8. RSTI merging of types. The variation allows for different
performance and security guarantees.

a full look at the program and analyze all the scope-type
information at once, instead of doing it per object file, allows
STI to completely map all the scope-type information for all
the pointers accurately for the entire program.

6 Evaluation

We evaluate RSTI by answering the following questions:
• How effective is RSTI in preventing state-of-the-art attacks
as well as real-world attacks? (§6.1)

• How secure is RSTI against abusing pointer-to-pointer
metadata and pointers with the same RSTI-type? (§6.2)

• How much performance overhead does RSTI impose in
benchmarks and real-world programs? (§6.3)

6.1 Security Evaluation

This section evaluates RSTI’s effectiveness in stopping secu-
rity attacks. We first explain the different types of attacks
(§6.1.1), and how RSTI defends against these attacks (§6.1.2).

6.1.1 Attacks Landscape. In this section, we show that
RSTI can defend against both control-flow hijacking and
data-oriented attacks. Table 1 shows a variety of state-of-the-
art attacks, grouped by category, and includes both real-life
software code (R) and synthetic victim code (S) attacks. Real-
life software code attacks are attacks performed on actual
software with actual vulnerabilities, and synthetic victim
code attacks are a contrived exploit of the given class. We ex-
ercised RSTI against powerful attacks, such as NEWTON [81]
and AOCR [69], as well as C++-specific attacks, such as
COOP. We also chose attacks from exploits in libtiff and
Python. Lastly, we evaluate RSTI against a Data Oriented
Programming (DOP) attack [44] that leaks an SSL key. We
surveyed these latest state-of-the-art attacks and made our
best effort to include all the latest attacks that cover all the
aspects that we want to showcase, such as use of code point-
ers, data pointers, and real-life code vs. synthetic victim code.
The COOP attacks are synthetic victim code attacks, while
the rest are executed on real-life software code. There are no
standard security benchmarks for evaluating data pointers.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

Table 1. Real and synthesized exploits. This table shows which pointers are being abused and how the scope-type information changes. (R)
refers to attacks on real-life software code. (S) refers to attacks on synthetic victim code.

Attack Category & Type Pointers being abused

Original scope-type

information

Corrupted scope-type

information

Control

flow

hijacking

NEWTON CsCFI
attack [81] (R)

Corrupted: c->send_chain

Target: malloc

Type: ngx_send_chain_pt

Scope: ngx_http_write_filter

Type: void* (size_t size)

Scope: libc

AOCR NGINX
Attack 1 [69]
(R)

Corrupted: task->handler

Target: _IO_new_file_overflow

Type: void (*handler) (void *data,

ngx_log_t *log)

Scope: ngx_thread_pool_cycle

Type: int *(File *f, int ch)

Scope: libc

AOCR NGINX
Attack 2 [69]
(R)

Corrupted: p=log->handler

Target: ngx_master_process_cycle

Type: ngx_log_writer_pt

Scope: ngx_log_set_levels

Type: void *(ngx_cycle_t *cycle)

Scope: main

AOCR Apache
Attack [69]
(R)

Corrupted: eval->errfn

Target: ap_get_exec_line

Type: sed_err_fn_t

Scope: sed_reset_eval, eval_errf

Type: char *(apr_pool_t *p, const

char *cmd, char * const *argv)

Scope: set_bind_password

Control Jujutsu
NGINX [34]
(R)

Corrupted: ctx->output_filter

Target: ngx_execute_proc()

Type: ngx_output_chain_filter_pt

Scope: ngx_output_chain

Type: static void *(ngx_cycle_t

cycle, void data)

Scope: ngx_execute

CVE-2014-8668
(R)

Corrupted: tif->tif_encoderow

Target: Arbitrary pointer

Type: TIFFCodeMethod

Scope: _TIFFSetDefaultCompression,
TIFFWriteScanline, TIFFOpen, main

Unknown, since this is a
CVE and not an attack

CVE-2014-1912
(R)

Corrupted: tp->tp_hash

Target: Arbitrary pointer
Type: hashfunc

Scope: inherit_slots, PyObject_Hash
Unknown, since this is a
CVE and not an attack

COOP REC-G
[27] (S)

Corrupted: objB->unref

Target: virtual ∼Z()
Type: class X

Scope: class Z

Type: class Z

Scope: class Z

COOP ML-G
[73] (S)

Corrupted: students[i]

->decCourseCount()

Target: virtual ∼Course()

Type: void *()

Scope: class Student, class Course
Type: class Course

Scope: class Course

PittyPat COOP
Attack [31] (S)

Corrupted: member_2->registration

Target: member_1->registration

Type: void*()

Scope: main, class Student
Type: void*()

Scope: main, class Teacher

Data

oriented

attack

DOP ProFTPd
Attack [44] (R)

Corrupted: &ServerName

Target: resp_buf, ssl_ctx
Type: const char*

Scope: core_display_file

Type: char*

Scope: pr_response_send_raw

NEWTON CPI
Attack [81] (R)

Corrupted: v[index].get_handler

Target: dlopen

Type: ngx_http_get_variable_pt

Scope: ngx_http_get_indexed_variable

Type: void* (const char *filename,

int flags)

Scope: ngx_load_module

6.1.2 Attacks in Detail and How RSTI Defends. As
Table 1 indicates, in all the known attacks, the scope-type in-
formation of the corrupted pointers differs from the original
one, thus allowing the attacks to be detected by RSTI. Due
to space limitations, we only explain two of these attacks in
detail.
NEWTON CsCFI attack. This is an attack on NGINX
that calls and exploits mprotect. One of the attack steps is
maliciously overwriting a function pointer (c->send_chain)
in the function ngx_http_write_filter with a pointer to
malloc. If the malloc pointer is in libc, then it won’t have
a PAC on it, and thus authentication would fail. Moreover,
if we assume that both the function pointer and the malloc
pointer are protected byRSTI, then authenticationwould still
fail due to both having different types (void*(size_t size)
and ngx_send_chain_pt), as well as being in different scopes.
Thus, RSTI detects this attack.
DOP ProFTPd attack. This is a Data Oriented Program-
ming attack [44] which corrupts the first known pointer
of struct ssl_ctx in a loop and overwrites it with 8 mali-
cious dereferences, relying on 4 gadgets for each derefer-
ence. Since these dereferences invoke load gadgets, these
gadgets are protected by RSTI, and thus cannot be invoked

maliciously without conforming to the RSTI-type. This load
gadget corrupts &ServerNamewith data from resp_buf. How-
ever, &ServerName and resp_buf have different RSTI-types.
&ServerName is of type const char* and its scope is core_dis
play_file, while resp_buf is of type char*with scope pr_res
ponse_send_raw. SinceRSTI protects data pointerswithRSTI-
type, RSTI detects this attack. This attack can only succeed
if all dereferences and gadgets have the same RSTI-type.

Table 2 summarizes the RSTImechanisms, attacker restric-
tions, and defense capabilities of each mechanism.
Comparison against prior works. RSTI offers a refined
type compared to other prior data pointer integrity works
that use PAC, such as PARTS [55], and thus has better cover-
age against pointer substitution attacks. For example, in the
DOP ProFTPD attack in Table 1, the corrupted and original
pointers are both of type char*. PARTS wouldn’t be able
to detect this, since it only relies on type. However, RSTI’s
refined scope-type detects it. The PittyPat attack is another
example. Thus, RSTI can mitigate more attacks.

6.2 Analysis on RSTI Instrumentation

6.2.1 Equivalence Class. Here, we showcase the useful-
ness of RSTI-type information. We define some terminology:

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
Table 2. Security evaluation summary. This table shows how each RSTImechanism constricts an attacker, as well as their security guarantees.

Technique RSTI-STC RSTI-STWC RSTI-STL

How it

works

Constricting variables to their scope, type
and permission, and handle casts by
combining into one compatible type

Constricting variables to their scope, type
and permission, and handle casts by
authenticating/re-signing a pointer

Constricting variables to their scope, type,
permission and location without combining.
In other words, adding &p to the modifier.

Attacker

restriction

The attacker here can substitute pointers if
they both have a valid PAC and as well as
have the same RSTI-type.

Similar to RSTI-STC, the attacker can
substitute pointers if they both have a valid
PAC, as well as have the same RSTI-type.

The attacker here cannot even substitute a
pointer at a separate location.

Defense

capability

Pointer corruption: An attacker cannot
substitute with pointers that have different
RSTI-types. However, the size of the
RSTI-type may be large due to combining.
Spatial Safety: An attacker overflowing the
buffer needs to override with a pointer or
location that is of the same RSTI-type.
Temporal Safety: Similar to spatial safety,
an attacker needs to reuse the freed pointer
within the same scope and type.

Pointer corruption: An attacker cannot
substitute with pointers that have different
RSTI-types. Due to not combining,
RSTI-STWC is stronger than RSTI-STC.
Spatial Safety: Achieving an attack through
spatial violations is harder, due to stricter
RSTI-type at that pointer.
Temporal Safety: Similarly, an attacker
needs to reuse the freed pointer with the
same RSTI-type, but stronger than RSTI-STC.

Pointer corruption: Here, the pointer would
have no substitutes, meaning that only that
pointer can be dereferenced from that location.
Spatial Safety: It wouldn’t be possible to abuse
a pointer with a spatial safety violation. A buffer
overflow would always be detected due to &p.
Temporal Safety: Similar argument to spatial
safety, any usage of the freed pointer with any
other pointer or at another location would be
detected due to &p.

Table 3. SPEC 2006 equivalence class data. (NT: Number of types
in the program; RT: Number of RSTI-types; NV: Total number of
pointer variables; ECV: Equivalence class of variable; ECT: Equiva-
lence class of type.)

BM NT
RT

NV
Largest ECV Largest ECT

STC STWC STC STWC STC STWC

perlbench 155 318 722 2939 198 82 33 1
bzip2 25 31 55 122 32 13 7 1
mcf 12 35 40 95 9 8 2 1
milc 55 154 195 440 54 18 18 1
namd 30 73 100 230 23 23 10 1
gobmk 120 216 417 1057 111 46 25 1
dealII 2546 4528 8878 21018 676 44 192 1
soplex 129 970 1690 3399 137 27 66 1
povray 282 620 1446 3791 229 25 76 1
hmmer 90 198 405 973 56 24 16 1
libquantum 13 33 44 58 9 4 5 1
sjeng 29 47 73 130 19 9 7 1
h264ref 116 252 354 727 48 23 15 1
lbm 14 14 20 33 12 7 4 1
omnetpp 255 558 1241 2458 94 26 31 1
astar 36 59 98 156 18 11 12 1
sphinx3 88 188 321 686 36 20 12 1
xalancbmk 2558 7503 14073 32097 603 122 206 1

• Number of types in program (NT): This is the number
of basic types a program has, such as int*, void*, etc.

• Number of RSTI-types (RT): This refers to the actual
types that are enforced by the specific RSTI mechanism.

• Equivalence Class of Type (ECT): RSTI-STWC has the
advantage of having only one basic type for each RSTI-type,
whereas RSTI-STC can have more than one basic type
in an RSTI-type, due to the combining. We refer to the
number of basic types in each RSTI-type as Equivalence
Class of Type (ECT). We use the term equivalence class
since this count provides a measure of how viable pointer
substitution attacks can be within an application.

• Equivalence Class of Variable (ECV): RSTI-STWC has
a maximum ECT of 1, due to there being only one type
in each RSTI-type. However, RSTI-STWC does not have
one variable for each RSTI-type. Several variables can be
declared within the same RSTI-type. We refer to the num-
ber of variables in each RSTI-type as Equivalence Class of

Variable (ECV). The largest ECV for RSTI-STL is always 1,
due to the inclusion of the location (&p) in the modifier,
while the largest ECV for RSTI-STWC would vary.
Table 3 shows the EC data for SPEC CPU2006. RSTI in-

creases the number of types that can be distinguished in
a program. Also, the impact of combining RSTI-types for
RSTI-STC reduces the number of RSTI-types in the mecha-
nism, but is still higher than the number of types without
RSTI. RSTI-STL is not shown in the table. This is because the
largest ECT and ECV for RSTI-STL are always 1, due to the
enforcement of the location. RSTI-STL is the most secure,
however RSTI-STWC does still provide security value due
to its ECT being always 1, and significantly reducing ECV. In
regards to the PAC length, prior work [42] has shown that
the number of PACs available is sufficient for practical cases.

6.2.2 Pointer-to-pointer data from SPEC 2006. We had
previously explained our exact use case of pointer-to-pointer
handling in §4.7.7. Our intuition was that this exact case of
losing the original type of the pointer when a pointer-to-
pointer is casted and passed as an argument to a function
is rare. This was confirmed by our analysis of SPEC 2006.
There is a total of 7,489 sites across the benchmarks where
a pointer-to-pointer is passed or loaded. Of those, only 25
meet the special criteria where the original type could be
lost. This confirms our intuition that this is a rare case.

6.3 Performance Evaluation

6.3.1 Methodology. Our evaluations were run on the Ap-
ple M1 [9], which supports the ARMv8.4 architecture and
ARM PA. We used an Apple Mac Mini M1 [8], that has 4
small cores, 4 big cores, and 8GB DRAM. Our prototype was
implemented on Apple’s LLVM fork [1]. We compiled all the
applications with LTO and O2 for fair comparison.
Evaluating C programs. All our C programs were run with
real PA instructions. We were able to disable Apple’s use of
PA [10] to avoid any conflicts that would happen between
RSTI’s and Apple’s PA instrumentation.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

0
10
20
30
40
50
60
70
80

50
0.p
erl
be
nc
h_
r

50
5.m

cf_
r

52
0.o
mn
etp
p_
r

52
3.x
ala
nc
bm
k_
r

53
1.d
eep

sje
ng
_r

54
1.l
eel
a_
r

55
7.x
z_r

60
0.p
erl
be
nc
h_
s

60
5.m

cf_
s

62
0.o
mn
etp
p_
s

62
3.x
ala
nc
bm
k_
s

63
1.d
eep

sje
ng
_s

64
1.l
eel
a_
s

65
7.x
z_s

50
8.n
am
d_
r

51
0.p
ars
ret
_r

51
1.p
ov
ray
_r

51
9.l
bm
_r

53
8.i
ma
gic
k_
r

54
4.n
ab
_r

61
9.l
bm
_s

63
8.i
ma
gic
k_
s

64
4.n
ab
_s

G
e
o
m

e
a
n
-
S
P
E
C
2
0
1
7

G
e
o
m

e
a
n
-
S
P
E
C
2
0
0
6

G
e
o
m

e
a
n
-
n
b
e
n
c
h

G
e
o
m

e
a
n
-
C
P
y
t
h
o
n

N
G
I
N
X

G
e
o
m

e
a
n
-
a
ll

171 105 161 171 100 160 189 124
RSTI-STWC
RSTI-STC
RSTI-STL

Pe
rf
or
m
an
ce

ov
er
he
ad

(%
)

Figure 9. The performance overhead of SPEC CPU2017, and the geometric means of SPEC CPU2006, nbench, CPython Pytorch and NGINX
for all three RSTI mechanisms.

0
20
40
60
80
100
120
140
160
180

ST
WC ST

C
ST
L

SPEC 2006

0

1

2

3

4

5

6

7

ST
WC ST

C
ST
L

nbench

0

5

10

15

20

25

30

35

ST
WC ST

C
ST
L

PyTorch

Figure 10. The performance overhead and geometric means of
SPEC CPU2006, nbench and CPython Pytorch for all three RSTI
mechanisms. The box plot shows the minimum, median, maximum
and quartile values. The black dots represent outlier values. The
red dots represent the geometric mean.

Evaluating C++ programs. Whilst evaluating C++ pro-
grams, we discovered that PA instructions are built into
Apple’s standard C++ library. Thus, we were not able to turn
them off. So, for C++ applications, we first did a correctness
test on ARM’s Fixed Virtual Platform (FVP) [11]. Then, in
order to emulate the performance overhead of the PA instruc-
tions, we used seven XOR (eor) instructions as an equivalent
to one PA instruction on the Mac Mini M1. This has been
measured and confirmed in previous works [47, 54, 84].
Benchmarks. For our performance evaluation, we used a
wide variety of benchmarks to showcase RSTI’s versatility,
namely: SPEC CPU 2006 [41], SPEC CPU 2017 [16], and
nbench [59]. We ported the SPEC CPU 2006 benchmarks to
the Apple M1 and built them from scratch. We were not able
to run 403.gcc and 625.x264 on the M1, in spite of using
Apple’s own Clang compiler. We think that there is a bug in
the macOS toolchain version that we used.

6.3.2 Performance Overhead. Figure 9 shows the per-
formance overhead for the SPEC CPU2017 benchmarks, as
well as NGINX and the geometric mean of SPEC CPU2006,

nbench and CPython PyTorch. The individual performance
numbers for SPEC CPU2006, nbench and CPython PyTorch
were not included due to space limitations. Thus, we use
boxplots to show the distribution in Figure 10.
SPEC CPU2017. SPEC 2017 benchmarks have a geomet-
ric mean of 6.86%, 3.17%, and 12.70% for RSTI-STWC, RSTI-
STC, and RSTI-STL respectively. Some benchmarks, such as
perlbench, povray, and xalancbmk have exceptionally higher
overhead. These benchmarks are known to heavily derefer-
ence pointers, either in a loop or very frequently [47].
SPEC CPU2006. SPEC 2006 benchmarks have a geometric
mean of 8.42%, 5.36%, and 21.47% for RSTI-STWC, RSTI-STC,
and RSTI-STL, respectively. We analyzed the instrumenta-
tion and found the performance overhead is highly correlated
with the number of instrumented load/stores, with a Pear-
son correlation factor of 0.75-0.8. There are some exceptions,
due to loops or some of the instrumented loads/stores never
getting called, but the overall results are consistent.
CPython 3.9. For CPython3.9, we evaluated PyTorch bench-
marks [3] to test how RSTI would perform if used in a ma-
chine learning context.The CPython PyTorch benchmarks
have a geometric mean of 5.01%, 3.44%, and 10.80% for RSTI-
STWC, RSTI-STC, and RSTI-STL, respectively. Thus, RSTI
can be utilized in machine learning scenarios where addi-
tional security guarantees are needed.
NGINX. We evaluated NGINX, a real-world application, on
the Apple M1. We stress its 4 big cores and use the same con-
figuration used to test NGINX TLS transactions per second
[60]. We relied on wrk [36], an HTTP benchmarking tool, to
stress test NGINX by generating concurrent HTTP requests.
wrk was run on a separate machine on the same network
and spawned three threads, with each thread handling 50
connections. The overhead was 5.98%, 3.93%, and 12.76% for
RSTI-STWC, RSTI-STC and RSTI-STL, respectively.
The total geometric mean across all the benchmarks and

applications is 5.29%, 2.97% and 11.12% for RSTI-STWC, RSTI-
STC and RSTI-STL, respectively.

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Overall. As can be seen, the RSTI mechanisms have mild
overhead. Some exceptions are there for RSTI-STL, where the
overhead can exceed 100%. This is still comparatively lower
to other mechanisms such as DFI, which has an average
overhead of around 106%. However, real programs, such as
NGINX and PyTorch, have a reasonable overhead. Thus, the
RSTI mechanisms can be effectively used to secure machine
learning and real-world applications.
Comparison against prior works RSTI offers lower over-
head compared to other PAC-based defense mechanisms
such as PARTS [55]. PARTS is evaluated only on nbench,
and the mean overhead is 19.5%. In comparison, RSTI’s mean
overhead on nbench is 1.54%, 0.52% and 2.78% for RSTI-
STWC, RSTI-STC and RSTI-STL respectively. Although both
PARTS andRSTI instrument data pointers, our design choices,
such as using LLVM ptrauth intrinsics, running the pass in
the backend, using LTO and -O2 optimizations allowed our
compiler to produce more optimized code.

7 Discussion and Limitations

Comparisonwithmemory safety. Due to the constricting
nature of the RSTI mechanisms and due to the fact that
RSTI protects all pointers in a program, RSTI provides a
static alternative to traditional memory safety techniques
for providing spatial and temporal safety. Bear in mind that
RSTI does not prevent spatial and temporal memory errors
but prevents an attacker from abusing them. In addition to
that, RSTI does not instrument non-pointer variables, and
they are out of scope of this work. The design can be extended
to include offsets and indexes by converting them to pointers
to cover them, but we relegate this to future work.
Metadata attack in RSTI. Pointer-to-pointer metadata
is the only metadata that is stored in memory. However,
the attacker cannot see the actual types in memory. In our
implementation, each type is assigned a type ID in the inter-
nal LLVM data structure during compilation. When storing
pointer-to-pointer metadata, that type ID is used to represent
each type. Thus, the metadata information is not meaningful
to the attacker. Also, the metadata is read-only and can only
be accessed by the RSTI pointer-to-pointer library.
RSTI with mechanisms other than PAC RSTI can be
enforced without necessarily relying on ARM’s PAC. PAC
is more of an implementation choice. The enforcement can
be done with any mechanism that can utilize the scope-type
information. For example, CCFI [58] relies on classes of point-
ers and an AES cryptographic function to generate MACs
that get stored alongside the object. A hardware-accelerated
AES cryptographic mechanism, similar to the one in CCFI,
can be used to replace PAC. RSTI can also be used in embed-
ded systems by using PACBTI [13] introduced in ARMv8.1-
M. It is similar to ARMv8.3 PAC, but the PAC is placed in a
separate register and not on the pointer.

Possibility of replay attacks Due to the existence of an
equivalence class more than 1 for RSTI-STC and RSTI-STWC,
as can be seen in Table 3, it would be theoretically possible
for replay attacks to occur. For example, an attacker want-
ing to abuse perlbench under RSTI-STWC would have to
choose gadgets that are confined to the 82 equivalent vari-
ables. This is even more of a possibility with RSTI-STC due
to the combining of RSTI-types. For example, an attacker
wanting to abuse perlbench under RSTI-STC would have to
choose gadgets that are confined to the 33 equivalent types
or the 198 equivalent variables. However, the viability of a
replay attack is still reduced with RSTI. In order to carry
out a successful attack by abusing pointers in a program, an
attacker needs the pointers to be actually useful to the attack,
not just any pointers. This makes practical attacks harder
to execute on the RSTI-mechanisms. A potential area of fu-
ture work might be choosing the mechanism based on the
variables with the same RSTI-type. For example in the case
of xalancbmk which has 122 equivalent variables for RSTI-
STWC, STL can be used to ensure security. RSTI-STWC can
be used when the number of variables with the same RSTI-
type is smaller, such as in the case of mcf which has only 9
equivalent variables for RSTI-STWC.
Handling external code RSTI supports uninstrumented
libraries by stripping the PACwhen an external library call is
made. However, this does not work for all cases. If a pointer is
passed directly to the external library, then the pointer will be
authenticated first, and the same happens when the pointer
gets passed from the external library. However, if there is a
composite pointer, for example a pointer to a structure that
is a node in a linked list, then this would not be supported
without compiling the external library with RSTI to verify
the pointer when it gets used in the external library. If the
external library is not compiled with RSTI, then it is a bad
pointer that will cause the RSTI security check to fail. Thus,
the external library could be compiled with RSTI if needed.
This issue is also available in other similar solutions such as
CPI [53] and VIP [48].
Exclusion of non-pointer variables RSTI only instru-
ments pointer variables. Non-pointer variables are out of
scope. The design can be extended to include converting
offsets to pointers to cover them. However, this is not in the
scope of this work and we relegate this to future work.

8 Related Work

Type-based defenses. EffectiveSan [32] conducts bounds
checking by combining type checking with low fat pointers.
RSTI does not aim to do bounds checking and does not rely
on low fat pointers. TDI [62] relies on grouping types into
specific memory arenas by relying on a special allocator
and compiler instrumentation. RSTI doesn’t need a special
allocator and thus doesn’t suffer from the same compatibility
issues. Type after type [79] replaces regular allocations with

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

typed allocations that never reuse memory previously used.
Since this is done with a special allocator, it has compatibility
issues that RSTI doesn’t suffer from. Type-based defenses
suffer from attacks that abuse pointers of the same type. RSTI
adds the permission, scope and location to better defend
against these attacks. However, this means that external
libraries must be instrumented with RSTI to be protected.
TDI, for example, doesn’t require that since pointers passed
to external functions or stored in memory are always masked.
This limitation can be overcome by compiling the library
with the RSTI compiler.
ARM PAC defenses. PARTS [55] protects pointers with
pointer authentication by relying on the LLVM ElementType
as the modifier. The LLVMElementType is likely to repeat and
can be exploited [47]. PARTS relies only on the default type
and doesn’t have the distinct type of scope-type information
that RSTI provides. This makes PARTS vulnerable to pointer
substitution attacks. RSTI is less susceptible to these attacks
than PARTS. PARTS has an average overhead of 19.5% on
nbench, while RSTI has an averageof 1.54%, 0.52%, and 2.78%
on nbench for RSTI-STWC, RSTI-STC, and RSTI-STL respec-
tively. AOS [51] utilizes the PAC as an index to access a
bounds table and do bounds checking. AOS extends the ISA
with extra instructions and only handles the heap, whereas
RSTI doesn’t need any custom extensions and handles both
heap and stack. AOS does ensure heap spatial and temporal
safety, whereas RSTI does not. However, this comes at the
cost of modifying the hardware, whereas RSTI does not. This
tradeoff makes RSTI more practical to implement.
Data oriented defenses. Data Flow Integrity (DFI) [22]
makes sure that a variable can only be written by its le-
gitimate write instruction. However, complete DFI incurs
around 103% runtime overhead on average and 50% memory
overhead. By comparison, RSTI has a lower average run-
time overhead, and almost no memory overhead. Hardware
assisted Data Flow Isolation (HDFI) [75] provides instruction-
level isolation by relying on tags. Whenever a memory is
read, HDFI checks if the tag matches the expected value.
However, HDFI relies on a 1-bit tag, and thus only two pro-
tection domains. RSTI’s use of pointer authentication allows
for a much finer grained protection. YARRA [72] is an exten-
sion of the C language that relies on programmer annotations
to protect critical data types. By comparison, RSTI does not
need any programmer annotations. WIT [7] uses points-to
analysis to identify objects that can be modified by each
instruction. They then use static analysis to identify mem-
ory accesses and objects that are safe. These are accesses
that do not violate write integrity and objects that only have
safe accesses. WIT only instruments writes that are unsafe.
However, WIT does not protect reads, and thus data can be
corrupted when being read into a register. RSTI can defend
against this type of attack. RSTI protects all reads and writes
in a program and makes sure they are legitimate.

Control-flow hijacking defenses. Control-Flow Integrity
(CFI) [6] constricts the number of valid target sites for an
indirect control-flow transfer. Static CFI schemes are vul-
nerable to a control flow bending [19] attack. Since RSTI
protects all pointers, RSTI is able to defend against a bend-
ing attack, whereas static CFI schemes cannot. Code Pointer
Integrity (CPI) [53] protects a subset of pointers, referred
to as sensitive pointers. Since RSTI protects all pointers, it
provides stronger guarantees than CPI. CPI is vulnerable to
the NEWTON attack, whereas RSTI is able to defend against
it as we discussed in §6.1.
Other memory safety defense mechanisms Both RSTI
and memory safety techniques aim to defend against attack-
ers by enforcing the correct execution of a program. How-
ever, RSTI does not prevent spatial and temporal memory
errors and it does not protect non-pointer variables, com-
pared to memory safety techniques that might cover these.
The trade-off here is that RSTI has much more efficient per-
formance than these techniques whilst providing protection
to all pointers in a program. Our choice of context is built
off of what is already available in the program, so it does
not need complex compiler analysis to determine how the
pointers should be used.

It is possible for other memory safety guarantees to be en-
coded in PAC contexts. For example, PACMem [54] uses the
object size and a unique birthmark to encode the metadata
for memory objects into the PAC. However, this necessi-
tates a large and complex metadata with memory overhead
of around 82.96%, whilst RSTI uses little metadata. SAFE-
Code [30] is a heap-based memory safety mechanism that
uses pool allocation based on types. RSTI is able to encode
the metadata it needs into the pointer, and thus can do run-
time checks directly with the authentication instructions,
whereas SAFECode relies on doing heap runtime checks
due to its reliance on the pool allocation. In addition to that,
RSTI’s implementation is simpler than SAFECode. There
could be some errors that are detected by RSTI which are
not detected by SAFECode, and vice versa. However, we
haven’t been able to measure this. Baggy Bounds Check-
ing (BBC) [4] is a bounds checking mechanism that relies
on checking allocation bounds rather than precise object
bounds. PAMD [57] extends BBC to attach metadata to mem-
ory objects. SoftBound+CETS [63] rely on bounds checking
and a lock-and-key mechanism to ensure temporal and spa-
tial safety. In contrast to these mechanisms, RSTI doesn’t
do bounds checking and focuses on protection of pointers.
Even though RSTI does not guarantee spatial and temporal
safety to the extent that these mechanisms do, it still does
provide some spatial and temporal safety guarantees. SAFE-
Code, BBC and PAMD do not require external libraries to
be recompiled, where as RSTI does in order to fully protect
them due to the change in pointer layout. Due to the change
in pointer semantics, it is necessary for external libraries to

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

have the PAC instructions instrumented in order to protect
them. However, the tradeoff here is that this comes at the
cost of non-negligible memory overhead due to the extra
allocations in memory needed for the runtime checks. Soft-
Bound+CETS doesn’t change the pointer layout but bounds
information still is not propagated to the external libraries.
Thus, the limitation of external library compatibility is not
unique to RSTI. CHERI [83] redefines pointers into capabili-
ties, providing security with additional embedded metadata.
CHERI completely redefines what a pointer is, thus having
compatibility issues that RSTI doesn’t have. HardBound [29]
is a memory safety defense mechanism that does hardware
bounds checking. HardBound requires new hardware in-
structions to be added, while RSTI can defend with already
existing hardware security features. BOGO [87] utilizes In-
tel MPX [46] to achieve temporal safety, in addition to the
spatial safety provided by MPX. BOGO incurs a mean of 60%
runtime overhead for SPEC CPU 2006 benchmarks, whilst
RSTI incurs a mean of 8.42%, 5.36%, and 21.47% for RSTI-
STWC, RSTI-STC, and RSTI-STL, respectively.

9 Conclusion

This paper introduced Scope-Type Integrity (STI), a new
defense policy that enforces pointers to conform to the pro-
grammer’s intended usage by utilizing scope, type and per-
mission information and bringing that information back to
leverage during runtime. We presented RSTI, a robust and
efficient security mechanism that protects all pointers in a
program by leveraging ARM Pointer Authentication. RSTI
enforces STI to ensure that each pointer conforms to its
scope, type, and permission that was originally intended by
the programmer. RSTI leverages this bought back informa-
tion in the runtime. We implemented three RSTI defense
mechanisms with varying levels of security granularity, en-
forcing control-flow and data-flow integrity. We showcased
the security of RSTI against state-of-the-art synthesized and
real attacks, and demonstrated its low performance overhead
across a variety of benchmarks and real-world applications.

Acknowledgments

We thank our shepherd, John Criswell, and the anonymous
reviewers for their insightful comments and input to improve
the paper. We also thank the artifact evaluators and Jack
Chandler for their efforts. This work was supported by the
National Science Foundation (NSF) under grant 2153748.

A Artifact.

A.1 Abstract

This artifact contains the source code for the RSTI compiler,
the CMake file needed to compile it, and example C and C++
programs to test it. It should be noted that this source code
needs an Apple M1 machine with MacOS to properly test
it. The RSTI compiler is built on Apple’s fork of the LLVM

compiler infrastructure and uses hardware security features
that are available on theM1 chip. The artifact contains scripts
to compile the RSTI compiler, as well as scripts to compile
the example programs.

A.2 Artifact check-list (meta-information)

• Compilation:Compiling the RSTI Clang compiler andC/C++
code examples compiled the RSTI compiler.

• Run-time environment:MacOS 12 - Monterey.
• Hardware:MacMini with Apple M1 chip, 8GB RAM, 512GB
SSD.

• Execution: Running compiled sample programs.
• Output: Generated binaries of the sample programs in the
same directory.

• How much time is needed to prepare workflow (ap-

proximately)?: Around 20-30 minutes is needed to compile
the custom LLVM.

• Publicly available?: Yes, it is publicly available at:
https://doi.org/10.5281/zenodo.10799158. The github repo is
also available at https://github.com/cosmoss-jigu/rsti

• Code licenses (if publicly available)?: Apache License,
Version 2.0

• Archived: 10.5281/zenodo.10799158

A.3 Description

A.3.1 How to access. The artifact can be accessed from
the following link: https://doi.org/10.5281/zenodo.10799158.
It can also be accessed through this Github repo by cloning
it: https://github.com/cosmoss-jigu/rsti.

A.3.2 Hardware dependencies. The artifact requires the
Apple M1 chip with the ARMv8.3 ISA or later.

A.3.3 Software dependencies. The artifact requires Ma-
cOS with cmake, make and git packages installed. In addition,
the artifact requires System Integrity Protection (SIP) to be
disabled, and to add support for arm64e compilation to the
nvram boot arguments. Please check the README.md file in
the Github repo for instructions on how to do this.

A.4 Installation

Extract the tar ball from Zenodo or clone the Github repo
to your machine. Then follow the instructions listed in the
README.md file.

A.5 Experiment workflow

1. Create a build folder in the directory with the com-
mand mkdir build

2. Go into the build folder with the command cd build
3. Generate the Makefile from the CMakeLists with the

command cmake ..
4. Compile the RSTI compiler with the command
make llvm-mac-all

5. Run the rsti_compile scripts with their respective
example C/C++ program.

6. Run the generated binaries of each example program.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

For more details, see the README.md file.

A.6 Evaluation and expected results

Success in running the compiled programs with a "Hello
World"message being printed for the C program, and a "Hello
from regular function" message being printed for the C++
program

A.7 Notes

If youwish to use the RSTI compiler, please check the compile
scripts in the example directory for all the flags necessary.
You can copy the file and modify it as needed.

References

[1] Apple LLVM. https://github.com/apple/swift-llvm.
[2] Llvm pointer authentication. https://llvm.org/docs/PointerAuth.html.
[3] PyTorch Benchmarks. https://github.com/pytorch/benchmark.
[4] Baggy bounds checking: An efficient and Backwards-Compatible de-

fense against Out-of-Bounds errors. In 18th USENIX Security Sympo-
sium (USENIX Security 09), Montreal, Quebec, August 2009. USENIX
Association.

[5] Clang 13. ShadowCallStack, 2021. https://clang.llvm.org/docs/
ShadowCallStack.html.

[6] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS), Alexandria, VA, November 2005.

[7] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. Preventing memory error exploits with wit. In 2008
IEEE Symposium on Security and Privacy (sp 2008), pages 263–277, 2008.

[8] Apple. Apple Mac Mini M1, 2020. https://www.apple.com/shop/buy-
mac/mac-mini/apple-m1-chip-with-8-core-cpu-and-8-core-gpu-
256gb.

[9] Apple. Apple unleashes M1, 2020. https://www.apple.com/newsroom/
2020/11/apple-unleashes-m1/.

[10] Apple. Operating system integrity, 2021. https://support.apple.com/
en-hk/guide/security/sec8b776536b/1/web.

[11] Arm. Fixed Virtual Platforms. https://developer.arm.com/tools-and-
software/simulation-models/fixed-virtual-platforms.

[12] Arm. Top Byte Ignore, 2018. https://en.wikichip.org/wiki/arm/tbi.
[13] Arm. PACBTI, 2020. https://community.arm.com/arm-community-

blogs/b/architectures-and-processors-blog/posts/armv8-1-m-
pointer-authentication-and-branch-target-identification-extension.

[14] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and
Dan Boneh. Hacking blind. In Proceedings of the 35th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2014.

[15] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-
Oriented Programming: A New Class of Code-Reuse Attack. In Pro-
ceedings of the 6th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), page 30–40, Hong Kong, China,
March 2011.

[16] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineer-
ing, ICPE ’18, page 41–42, New York, NY, USA, 2018. Association for
Computing Machinery.

[17] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. Control-flow integrity: Pre-
cision, security, and performance. ACM Computing Surveys (CSUR),
50(1):16, 2017.

[18] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer.
CFIXX: Object Type Integrity for C++ Virtual Dispatch. In Proceedings

of the 2018 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2018.

[19] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R Gross. Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity. In Proceedings of the 24th USENIX Security
Symposium (Security), Washington, DC, August 2015.

[20] Nicholas Carlini and David Wagner. Rop is still dangerous: Breaking
modern defenses. In Proceedings of the 23rd USENIX Security Sympo-
sium (Security), San Diego, CA, August 2014.

[21] Scott A. Carr and Mathias Payer. Datashield: Configurable data con-
fidentiality and integrity. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’17,
page 193–204, New York, NY, USA, 2017. Association for Computing
Machinery.

[22] Miguel Castro, Manuel Costa, and Tim Harris. Securing Software
by Enforcing Data-flow Integrity. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 147–160, Seattle, WA, November 2006.

[23] Shuo Chen, Jun Xu, and Emre C. Sezer. Non-Control-Data attacks are
realistic threats. In 14th USENIX Security Symposium (USENIX Security
05), Baltimore, MD, July 2005. USENIX Association.

[24] Shuo Chen, Jun Xu, and Emre C. Sezer. Non-Control-Data attacks are
realistic threats. In 14th USENIX Security Symposium (USENIX Security
05), Baltimore, MD, July 2005. USENIX Association.

[25] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H
Deng. Ropecker: A generic and practical approach for defending
against rop attack. In Proceedings of the 2014 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, February
2014.

[26] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-
Guard™: Protecting pointers from buffer overflow vulnerabilities. In
12th USENIX Security Symposium (USENIX Security 03), Washington,
D.C., August 2003. USENIX Association.

[27] Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen,
Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn
De Sutter, and Michael Franz. It’s a TRaP: Table Randomization and
Protection Against Function-reuse Attacks. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May
2015.

[28] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Mon-
rose. Stitching the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In Proceedings of the 23rd USENIX
Security Symposium (Security), San Diego, CA, August 2014.

[29] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.
Hardbound: Architectural support for spatial safety of the c program-
ming language. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, page 103–114, 2008.

[30] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode:
Enforcing alias analysis for weakly typed languages. In Proceedings of
the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, page 144–157, New York, NY, USA, 2006.
Association for Computing Machinery.

[31] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim,
and Wenke Lee. Efficient protection of path-sensitive control security.
In Proceedings of the 26th USENIX Security Symposium (Security), pages
131–148, Vancouver, BC, Canada, August 2017.

[32] Gregory J. Duck and Roland H. C. Yap. Effectivesan: Type and memory
error detection using dynamically typed c/c++. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, page 181–195, New York, NY, USA, 2018.
Association for Computing Machinery.

[33] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,

https://github.com/apple/swift-llvm
https://llvm.org/docs/PointerAuth.html
https://github.com/pytorch/benchmark
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://www.apple.com/shop/buy-mac/mac-mini/apple-m1-chip-with-8-core-cpu-and-8-core-gpu-256gb
https://www.apple.com/shop/buy-mac/mac-mini/apple-m1-chip-with-8-core-cpu-and-8-core-gpu-256gb
https://www.apple.com/shop/buy-mac/mac-mini/apple-m1-chip-with-8-core-cpu-and-8-core-gpu-256gb
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://support.apple.com/en-hk/guide/security/sec8b776536b/1/web
https://support.apple.com/en-hk/guide/security/sec8b776536b/1/web
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://en.wikichip.org/wiki/arm/tbi
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension

Enforcing C/C++ Type and Scope at Runtime for
Control-Flow and Data-Flow Integrity ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Michael Bailey, and J. Alex Halderman. The matter of heartbleed. In
Proceedings of the 2014 Conference on Internet Measurement Conference,
IMC ’14, page 475–488, New York, NY, USA, 2014. Association for
Computing Machinery.

[34] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Mar-
tin Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control
Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity.
In Proceedings of the 22nd ACM Conference on Computer and Com-
munications Security (CCS), page 901–913, Denver, Colorado, October
2015.

[35] Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding control
flows using intel processor trace. In Proceedings of the 22nd ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Xi’an, China, April 2017.

[36] Will Glozer. a HTTP benchmarking tool, 2019. https://github.com/
wg/wrk.

[37] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. Out of control: Overcoming control-flow integrity. In Pro-
ceedings of the 35th IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, May 2014.

[38] Jens Grossklags and Claudia Eckert. 𝜏CFI: Type-Assisted Control Flow
Integrity for x86-64 Binaries. In Proceedings of the 21th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
Heraklion, Crete, Greece, September 2018.

[39] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. Pt-cfi:
Transparent backward-edge control flow violation detection using
intel processor trace. In Proceedings of the 7th ACM Conference on
Data and Application Security and Privacy (CODASPY), Scottsdale, AZ,
March 2017.

[40] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chis-
nall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and
Alex Richardson. Clean application compartmentalization with soaap.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, page 1016–1031, New York, NY,
USA, 2015. Association for Computing Machinery.

[41] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4):1–17, September 2006.

[42] Konrad Hohentanner, Philipp Zieris, and Julian Horsch. Pacsafe: Lever-
aging arm pointer authentication for memory safety in c/c++, 2022.

[43] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. Enforcing Unique
Code Target Property for Control-Flow Integrity. In Proceedings of
the 25th ACM Conference on Computer and Communications Security
(CCS), Toronto, ON, Canada, October 2018.

[44] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. Data-oriented programming: On the
expressiveness of non-control data attacks. In Security and Privacy
(SP), 2016 IEEE Symposium on, pages 969–986. IEEE, 2016.

[45] Qualcomm Technologies Inc. Pointer Authentication on ARMv8.3,
2017. https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf.

[46] Intel. Support for Intel® Memory Protection Extensions (Intel®
MPX) Technology, 2015. https://www.intel.com/content/www/us/
en/support/articles/000059823/processors.html.

[47] Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin
Jang, and Changwoo Min. Tightly seal your sensitive pointers with
PACTight. In 31st USENIX Security Symposium (USENIX Security 22),
pages 3717–3734, Boston, MA, August 2022. USENIX Association.

[48] Mohannad Ismail, Jinwoo Yom, Christopher Jelesnianski, Yeongjin
Jang, and Changwoo Min. Vip: Safeguard value invariant property
for thwarting critical memory corruption attacks. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’21, 2021.

[49] Jonathan Corbet. x86 NX support, 2004. https://lwn.net/Articles/
87814/.

[50] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang,
and Jie Yang. Origin-sensitive Control Flow Integrity. In Proceedings
of the 28th USENIX Security Symposium (Security), Santa Clara, CA,
August 2019.

[51] Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. Hardware-based always-
on heap memory safety. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1153–1166, 2020.

[52] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on Security and
Privacy (S&P’19), 2019.

[53] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
R Sekar, and Dawn Song. Code-Pointer Integrity. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), Broomfield, Colorado, October 2014.

[54] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying
Liu, and Chao Zhang. Pacmem: Enforcing spatial and temporal mem-
ory safety via arm pointer authentication. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 1901–1915, New York, NY, USA, 2022. Association for
Computing Machinery.

[55] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. PAC it up: Towards pointer integrity
using ARM pointer authentication. In Proceedings of the 28th USENIX
Security Symposium (Security), pages 177–194, Santa Clara, CA, August
2019.

[56] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and
Haibing Guan. Transparent and efficient CFI enforcement with intel
processor trace. In Proceedings of the 23rd IEEE Symposium on High
Performance Computer Architecture (HPCA), Austin, TX, February 2017.

[57] Zhengyang Liu and John Criswell. Flexible and efficient memory
object metadata. page 36–46, jun 2017.

[58] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
CCFI: Cryptographically Enforced Control Flow Integrity. In Proceed-
ings of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, Colorado, October 2015.

[59] Uwe Mayer. Linux/Unix nbench, 2017. https://www.math.utah.edu/
~mayer/linux/bmark.html.

[60] Faisal Memon. NGINX Plus Sizing Guide: HowWe Tested, 2016. https:
//www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/.

[61] Microsoft Support. A detailed description of the Data Execu-
tion Prevention (DEP) feature in Windows XP Service Pack 2,
Windows XP Tablet PC Edition 2005, and Windows Server 2003,
2017. https://support.microsoft.com/en-us/help/875352/a-detailed-
description-of-the-data-execution-prevention-dep-feature-in.

[62] Alyssa Milburn, Erik Van Der Kouwe, and Cristiano Giuffrida. Mitigat-
ing information leakage vulnerabilities with type-based data isolation.
In 2022 IEEE Symposium on Security and Privacy (SP), pages 1049–1065,
2022.

[63] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Ev-
erything you want to know about pointer-based checking. In 1st
Summit on Advances in Programming Languages (SNAPL 2015). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[64] Ben Niu and Gang Tan. Modular control-flow integrity. In Proceedings
of the 2014 ACM SIGPLANConference on Programming Language Design
and Implementation (PLDI), Edinburgh, UK, June 2014.

[65] Ben Niu and Gang Tan. Per-input control-flow integrity. In Proceedings
of the 22nd ACM Conference on Computer and Communications Security
(CCS), Denver, Colorado, October 2015.

[66] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis.
Transparent ROP Exploit Mitigation Using Indirect Branch Tracing. In

https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.intel.com/content/www/us/en/support/articles/000059823/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059823/processors.html
https://lwn.net/Articles/87814/
https://lwn.net/Articles/87814/
https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/
https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mohannad Ismail, Christopher Jelesnianski, Yeongjin Jang, Changwoo Min, and Wenjie Xiong

Proceedings of the 22th USENIX Security Symposium (Security), Wash-
ington, DC, August 2013.

[67] Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict Protec-
tion for Virtual Function Calls in COTS C++ Binaries. In Proceedings of
the 2015 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2015.

[68] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. Pac-
man: Attacking arm pointer authentication with speculative execution.
In Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, ISCA ’22, page 685–698, New York, NY, USA, 2022.
Association for Computing Machinery.

[69] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas
Hobson, Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi,
Michael Franz, et al. Address-Oblivious Code Reuse: On the Effec-
tiveness of Leakage Resilient Diversity. In Proceedings of the 2017
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February–March 2017.

[70] Jonathan Salwan. Ropgadget: Gadgets finder and auto-roper, 2019.
https://github.com/JonathanSalwan/ROPgadget.

[71] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy, David Walker,
and Benjamin Zorn. Modular protections against non-control data
attacks. In 2011 IEEE 24th Computer Security Foundations Symposium,
pages 131–145, 2011.

[72] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy, David Walker,
and Benjamin Zorn. Modular protections against non-control data
attacks. Journal of Computer Security, 22(5):699–742, 2014.

[73] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code Reuse Attacks
in C++ Applications. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2015.

[74] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time Code
Reuse: On the Effectiveness of Fine-grained Address Space Layout
Randomization. In Proceedings of the 34th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2013.

[75] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungy-
oung Lee, Taesoo Kim, Wenke Lee, and Yunheung Pack. HDFI:
Hardware-Assisted Data-flow Isolation. In Proceedings of the 37th
IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May
2016.

[76] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal
war in memory. In Proceedings of the 34th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2013.

[77] The Clang Team. Clang 10 documentation: CONTROL
FLOW INTEGRITY, 2019. https://clang.llvm.org/docs/
ControlFlowIntegrity.html.

[78] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. Enforcing Forward-
Edge Control-Flow Integrity in GCC & LLVM. In Proceedings of the
23rd USENIX Security Symposium (Security), San Diego, CA, August
2014.

[79] Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos,
and Cristiano Giuffrida. Type-after-type: Practical and complete type-
safe memory reuse. In Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC ’18, page 17–27, New York, NY, USA,
2018. Association for Computing Machinery.

[80] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel
Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Practi-
cal context-sensitive CFI. In Proceedings of the 22nd ACM Conference
on Computer and Communications Security (CCS), Denver, Colorado,
October 2015.

[81] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis,
Xi Chen, Herbert Bos, and Cristiano Giuffrdia. The dynamics of inno-
cent flesh on the bone: Code reuse ten years later. In Proceedings of
the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, October–November 2017.

[82] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athana-
sopoulos, and Cristiano Giuffrida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2016.

[83] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. The cheri capability model:
Revisiting risc in an age of risk. SIGARCH Comput. Archit. News, page
457–468, jun 2014.

[84] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. In-
Kernel Control-Flow integrity on commodity OSes using ARM pointer
authentication. In 31st USENIX Security Symposium (USENIX Security
22), pages 89–106, Boston, MA, August 2022. USENIX Association.

[85] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. Practical control flow
integrity and randomization for binary executables. In Proceedings
of the 34th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2013.

[86] Mingwei Zhang and R Sekar. Control Flow Integrity for COTS Bina-
ries. In Proceedings of the 22th USENIX Security Symposium (Security),
Washington, DC, August 2013.

[87] Tong Zhang, Dongyoon Lee, and Changhee Jung. BOGO: Buy Spa-
tial Memory Safety, Get Temporal Memory Safety (Almost) Free. In
Proceedings of the 24th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
page 631–644, Providence, RI, April 2019.

https://github.com/JonathanSalwan/ROPgadget
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Control-flow Hijacking
	2.2 Data-Oriented Attack
	2.3 Scope, Type, and Permission in C/C++
	2.4 ARM Pointer Authentication

	3 Threat Model and Assumptions
	4 Runtime Scope-Type Integrity (RSTI)
	4.1 Design Goals
	4.2 Design Philosophy
	4.3 Design Overview
	4.4 Scope, Type, and Permission
	4.5 RSTI-types
	4.6 Enforcement and Defense Mechanisms
	4.7 Enforcement Details
	4.8 Merging of Compatible Types for Casting

	5 Implementation
	6 Evaluation
	6.1 Security Evaluation
	6.2 Analysis on RSTI Instrumentation
	6.3 Performance Evaluation

	7 Discussion and Limitations
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact.
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Notes

	References

