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Abstract

ARM is becoming more popular in desktops and data
centers, opening a new realm in terms of security attacks
against ARM. ARM has released Pointer Authentication,
a new hardware security feature that is intended to ensure
pointer integrity with cryptographic primitives.

In this paper, we utilize Pointer Authentication (PA) to
build a novel scheme to completely prevent any misuse
of security-sensitive pointers. We propose PACTIGHT
to tightly seal these pointers. PACTIGHT utilizes a
strong and unique modifier that addresses the current
issues with the state-of-the-art PA defense mechanisms.
We implement four defenses based on the PACTIGHT
mechanism. Our security and performance evaluation
results show that PACTIGHT defenses are more effi-
cient and secure. Using real PA instructions, we eval-
uated PACTIGHT on 30 different applications, includ-
ing NGINX web server, with an average performance
overhead of 4.07% even when enforcing our strongest
defense. PACTIGHT demonstrates its effectiveness and
efficiency with real PA instructions on real hardware.

1 Introduction
In recent years, the ARM processor architcture started
penetrating into the data center [8, 52, 53] and
mainstream desktop [10] markets beyond the mo-
bile/embedded segments. This opens a new realm in
terms of security attacks against ARM, increasing the im-
portance of having effective and efficient defense mech-
anisms for ARM.

Control-flow hijacking attacks are one of the most
critical security attacks. These attacks aim to subvert the
control-flow of a program by carefully corrupting code
pointers, such as return addresses and function pointers.
Control-flow integrity (CFI) [6] aims to defend against
these attacks by ensuring that the program follows its
proper control-flow. This is mainly done by generating
a control-flow graph (CFG) of the program and making
the program conform to it.

In order to defend against control-flow hijacking at-
tacks efficiently, ARM has introduced a new hardware
security feature, Pointer Authentication (PA) [34], which
ensures pointer integrity with cryptographic primitives.
PA computes a cryptographic MAC called a Pointer
Authentication Code (PAC) and stores it in the unused

upper bits of a 64-bit pointer. PA can be used to de-
fend against control-flow hijacking attacks securely and
efficiently with low performance and memory overhead.

However, PA is not almighty. Although several PA-
based defense mechanisms have been proposed [27, 41–
43] and deployed [11, 34], we identified that they are
still exposed to attacks, such as using a signing gadget
to forge PACs [15] and reusing PACs [43], allowing
arbitrary code execution.

In this paper, we propose PACTIGHT, which is a PA-
based defense against control-flow hijacking attacks.
In particular, we define three security properties of a
pointer such that, if achieved, prevent pointers from be-
ing tampered with. They are: 1) unforgeability: A pointer
p should always point to its legitimate object; 2) non-
copyability: A pointer p can only be used when it is at its
specific legitimate location; 3) non-dangling: A pointer
p cannot be used after it has been freed. PACTIGHT
tightly seals pointers and guarantees that a sealed pointer
cannot be forged, copied, or dangling.

Compared to previous PA-based defense mechanisms,
PACTIGHT assumes a stronger threat model such that
an attacker has both arbitrary read and write capabilities.
PACTIGHT also provides better coverage by protecting
a variety of security-sensitive pointers. In this paper, we
define a sensitive pointer as any pointer that can reach a
code pointer. PACTIGHT enforces the three properties
in order to prevent the pointers from being abused. En-
forcement of the three properties protects against attacks
that rely on manipulating the pointers.

We design PACTIGHT to achieve pointer integrity
by protecting all sensitive pointers and by providing
spatial and temporal memory safety for those sensitive
pointers. Protecting these sensitive pointers achieves
the balance between full memory safety and covering
only control-flow hijacking. This allows for reinforced
protection, thus achieving protection against control-
flow hijacking attacks and providing memory safety for
sensitive pointers. We demonstrate the effectiveness and
practicality of PACTIGHT by evaluating with real PA
instructions on real hardware.

In summary, we make the following contributions:
• We propose PACTIGHT, a novel and efficient ap-

proach to tightly seal pointers using PAC. By utilizing
PACTIGHT’s mechanisms, we make pointers unforge-
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able, non-copyable, and non-dangling.
• We implemented four defenses using PACTIGHT:

forward-edge protection, backward-edge protection,
C++ VTable pointer protection, and all sensitive
pointer protection.

• We provide a strong security evaluation by demon-
strating effectiveness against real-world CVEs and
synthesised attacks.

• We evaluate PACTIGHT implementations on SPEC
CPU2006, nbench, CoreMark benchmarks, and NG-
INX web server with real PAC instructions. We show
that PACTIGHT implementations achieve low perfor-
mance and memory overhead, 4.07% and 23.2% re-
spectively making it possible to deploy PACTIGHT
defenses in the real-world.

2 Background and Motivation
In this section, we introduce control-flow hijacking at-
tacks and ARM’s pointer authentication mechanism. We
then discuss defenses based on PAC and their limitations
to motivate our work.

2.1 Control-Flow Hijacking Attacks

Control-flow hijacking attacks are critical attacks to com-
puter systems because they may allow attackers to run
arbitrary code on the system. A popular way to carry
out a control-flow hijacking attack is to exploit mem-
ory corruption vulnerabilities, which C/C++ programs
are prone to having. In particular, attackers can alter
the value of a code pointer (e.g., return addresses and
function pointers) by corrupting the memory location
that stores the pointer to subvert the execution flow of a
program [16, 17, 20, 22, 26, 30, 59].

To defeat the attack, defenders must ensure that the
program has no single point that can let an attacker
corrupt code pointers as well as data pointers that refer
to code pointers in its recursive memory dereference
chain. Return-oriented programming (ROP) [56], jump-
oriented programming (JOP) [17], and counterfeit-object
oriented programming (COOP) [54] are the techniques
that aim to achieve code execution by chaining returns,
indirect call/jumps, and virtual function calls in an object
iteration loop, respectively.

2.2 ARM Pointer Authentication

ARMv8.3-A [34] introduced a new hardware security
feature, Pointer Authentication (PA). PA has been im-
plemented in the Apple A12 and M1 chips [61]. The
goal of PA is to protect the integrity of security-critical
pointers, such as code pointers. To this end, a pointer au-
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Figure 1: PA signs a pointer and generates a pointer authenti-
cation code (PAC) based on a address, a secret key, a 64-bit
user-provided modifier using PA instructions (e.g., pacia).
The signed pointer should be authenticated before the access
using the same PAC, address, secret key, and modifier using
PA instructions (e.g., autia).

thentication code (PAC) is generated by a cryptographic
hash function, as a message authentication code (MAC),
to put cryptographic integrity protection on the pointers.
A PAC is a MAC of the target pointer value, a secret
key, and a salt, which is a 64-bit modifier. The modi-
fier can be tweaked to bind the context of the program
when generating a PAC for a pointer. Some examples of
such context are conveying the type of the pointer as a
modifier, using stack frame address as a modifier, etc.

PAC signing. PAC utilizes a cryptographic hash algo-
rithm, namely QARMA [14]. The algorithm takes two
64-bit values (pointer and modifier), as well as a 128-bit
key, and generates a 64-bit PAC. These PACs are trun-
cated and added to the upper unused bits of the 64-bit
pointer as illustrated in Figure 1(a). Five keys in total can
be chosen to generate the PACs. These keys are stored
in special hardware registers protected by the kernel.

PAC authentication. The cryptographic algorithm
takes the pointer with the PAC and the modifier. The
PAC is then regenerated and compared with the one on
the passed pointer. To pass the authentication, both val-
ues need to be the same as the ones originally used to
generate the PAC. If the regenerated PAC matches, the
PAC is removed from the pointer and the pointer can
be used, as shown in Figure 1(b). Otherwise, the top
two bits of the pointer are flipped, rendering the pointer
unusable. Any use of the pointer results in a segfault.

PAC instructions. PAC instructions start with either
pac or aut followed by a character that identifies whether
it protects a code pointer, data pointer or generates a
generic PAC. This is then followed by another charac-
ter that identifies which key is being used. For exam-
ple, the pacib instruction generates a PAC for a code
pointer that uses the B-key. When authenticating this
code pointer, the authenticate instruction for the code
pointer and B-key, i.e., autib, must be used to success-
fully authenticate. Without this, the pointer cannot be
used as its semantics are changed.
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Defense Protection scope Attacker
abilities PAC modifier Unforegablity Non-copyability Non-dangling

PARTS-CFI [43] Return addresses and
indirect code pointers Arbitrary read-write SP for return addresses

and type-id for indirect code pointers. ✓ × ×
PACStack [42] Return addresses Arbitrary read-write Previous return address on the stack ✓ ✓ ×
PTAuth [27] Heap allocated objects Arbitrary write A generated object-id ✓ × ✓

PACTIGHT
All sensitive pointers
and return addresses

Arbitrary
read-write

The location of the pointer and a random tag
for sensitive pointers. Previous return address
and a unique function id for return addresses.

✓ ✓ ✓

Table 1: Comparison between PACTIGHT and state-of-the-art PAC-based defense mechanisms.
2.3 PAC Defense Approaches

Return address focused. Qualcomm’s return address
signing mechanism [34] protects return addresses from
stack memory corruption. It utilizes the paciasp and
autiasp instructions. These are specialized instructions
that sign the return address in the Link Register (LR)
using the Stack Pointer (SP) as the modifier and the
A-key to protect return addresses.

However, because this approach is susceptible to PAC
re-use attacks (see §2.4), PARTS return address protec-
tion [43] includes the SP with a function ID as a modifier
to harden the PAC scheme against re-use attacks. More-
over, PACStack [42] extends the modifier by chaining
PACs to bind all previous return addresses in a call stack.
On the other hand, PCan [41] relies on protecting the
stack with canaries generated with PAC using a modifier
consisting of a function ID and the least-significant 48
bits from SP.
Other code pointers. Apple extended its protection to
cover other pointer types including function pointers and
C++ VTable pointers. However, it uses a zero modifier
to protect them. PARTS [43] utilizes PAC to protect
function pointers, return addresses, and data pointers. It
utilizes a type ID based on LLVM ElementType as the
modifier for signing function pointers and data pointers.
Temporal safety. PTAuth [27] enforces temporal mem-
ory safety using PAC. PTAuth generates a new random
ID at each memory allocation and utilizes it as a mod-
ifier for generating a PAC. Because the corresponding
random ID of a pointer is cleared or updated when the
pointer is being freed or allocated, PTAuth detects the vi-
olations of temporal memory safety (e.g., use-after-free)
by maintaining it as a modifier to check the liveness of
a pointer at the time of authentication.

2.4 Limitations of Current PAC Defenses

Forging PAC. PAC relies on the security of the crypto-
graphic hash, that is, attackers cannot generate a valid
PAC for a pointer, even if they have both the pointer
address value and the corresponding modifier. However,
a memory corruption vulnerability in PAC generation
logic may serve as an arbitrary PAC generator, allowing
attackers to bypass the PAC authentication [15].

Reusing valid PACs in a different context. A PAC
generated for one context can be reused in a different
context if two contexts share the same modifier. This
applies not only to the case of using zero modifier, such
as Apple’s virtual function table protection, but also to
the case that shares the same modifier across different
contexts, such as Qualcomm/Apple stack protection. An
example case of the latter is to reuse the PAC generated
for a valid return address with a specific SP at a different
return location that shared the same SP (e.g., having
multiple function calls in a function, a case for sharing
the same stack frame for all of its returns). PARTS-CFI
is also susceptible to this attack because the approach
uses a static modifier for the pointer, based on its LLVM
ElementType. Having two different pointers of the same
type, such two pointers will share the same modifier, and
in such a case, attackers can reuse the PAC generated for
one in the context of using the other. Table 1 summarizes
the comparison between PACTIGHT and other existing
state-of-the-art PAC defense mechanisms.
Reusing dangling PACs. Attackers can reuse legiti-
mately generated PACs, even after a pointer becomes
dangling. This occurs if the modifier used for signing
the pointer does not convey the temporal state of the
pointer. In such a case, the PAC is still valid even after
deallocation of the memory referred to by the pointer,
and thereby, attackers may reuse a valid PAC for a dif-
ferent object that the PAC has signed. In particular, there
is no mechanism in PARTS or Apple’s Clang to dynami-
cally check and confirm if the pointers that they protect
are not dangling, thus they are susceptible to this attack.

3 Threat Model and Assumptions
Our threat model assumes a powerful adversary with
read and write capabilities by exploiting input-controlled
memory corruption errors in the program. The attacker
cannot inject or modify code due to Data Execution
Prevention (DEP), which is by default enabled in most
modern operating systems [35, 49]. Also, the attacker
does not control higher privilege levels. We assume that
the hardware and kernel are trusted, specifically that
the PA secret keys are generated, managed and stored
securely. Attacks targeting the kernel and hardware, such
as Spectre [37], and data only attacks, which modify and
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leak non-control data, are out of scope. Our assumptions
are consistent with prior works [23, 41–43] with the
exception of PTAuth [27], which only allows arbitrary
write and not arbitrary read.

4 PACTIGHT Design
In this section, we describe the design of PACTIGHT.
We first discuss our design goal (§4.1), then we intro-
duce three pointer integrity properties that PACTIGHT
enforces to overcome the limitations of prior PAC
approaches (§4.2), and then we compare PACTIGHT
to current state-of-the-art defenses (§4.3). Lastly, we
present the detailed design of PACTIGHT. As shown
in Figure 2, PACTIGHT consists of a runtime library
and compiler-based instrumentation. We first discuss
the runtime (§4.4) to explain how PACTIGHT en-
forces the pointer integrity properties and then explain
PACTIGHT’s automatic instrumentation and defense
mechanisms (§5).

4.1 PACTIGHT Design Goals

The overarching goal of PACTIGHT is to completely
prevent control-flow hijacking attacks in a program with
low performance overhead. While prior works on PAC
show promising results, they are limited in scope and/or
security protection as discussed in §2.3. To achieve our
goal, it is essential to enforce the complete integrity of
pointers, which we will discuss in §4.2, and prevent any
pointer misuse. We protect sensitive pointers [38] – all
code pointers and all data pointers that are reachable to
any code pointer – because guaranteeing the integrity of
all sensitive pointers is sufficient to make control-flow
hijacking impossible. In summary, our main goals are:
• Integrity: Prevent any misuse of sensitive pointers.
• Performance: Minimize runtime performance and

memory overhead.
• Compatibility: Allow protection of legacy (C/C++)

programs without any modification.

4.2 PACTIGHT Pointer Integrity Property

Based on the limitations of prior PAC approaches and
our observation on how a pointer can be compromised,
we define three security properties of pointer integrity,
discussed in detail below:
• Unforgeability: As illustrated in Figure 3(a), a pointer

can be forged (i.e., corrupted) to point to an unintended
memory object. Many memory corruption-based con-
trol flow hijacking attacks fall into this category by
directly corrupting pointers (e.g., indirect call, return
address). With the unforgeability property, a pointer

always points to its legitimate memory object and it
cannot be altered maliciously.

• Non-copyability: A pointer can be copied and re-used
maliciously as illustrated in Figure 3(b). Many infor-
mation leakage-based control flow hijacking attacks
first collect live code pointers and reuse the collected
live pointer by copying them to subvert control flow.
With the non-copyability property, a pointer cannot
be copied maliciously. It asserts that a live pointer
can only be referred from its correct location, pre-
venting the re-use of live pointers at different sites. If
non-copyability is guaranteed, the security impact is
non-replayability, and thus pointer attacks that replay
PAC-ed pointers for malicious use are prevented.

• Non-dangling: A pointer can refer to an unintended
memory object if its pointee object is freed or the freed
memory is reallocated as shown in Figure 3(c). The in-
tegrity of a pointer is compromised even if the pointer
itself is not directly forged or copied. Semantically,
the life cycle of a pointer should end when its pointee
object is destructed. Many attacks exploiting temporal
memory safety violation reuse such dangling pointers.
With the non-dangling property, a pointer cannot be
re-used after its pointee object is freed.
The importance of these properties stems from the

fact that to hijack control-flow, at least one of these prop-
erties must be violated. PACTIGHT is able to detect any
of these violations before the use of a pointer, thus guar-
anteeing the above mentioned pointer integrity. Note that
ARM PAC only enforces the unforgeability property.

4.3 Comparison against Other PAC-based De-
fenses

In contrast to other PAC-based defenses (Table 1),
PACTIGHT offers more coverage against PAC attacks.
PARTS [43] relies on a static modifier based on the
LLVM ElementType, which can be repeated. Even though
an attack based on this would be harder than when using
the SP as a modifier, it is still possible. PACTIGHT’s
unique modifier scheme eliminates any replayability of
PACs, and thus defends against PAC reuse.

PACStack [42] introduces the idea of cryptographi-
cally binding a return address to a particular control-flow
path by having all previous return addresses in the call
stack influence the PA modifier. PACStack only protects
return addresses on the stack and needs a forward-edge
CFI scheme with it, whilst PACTIGHT protects all sen-
sitive pointers on the stack and elsewhere.

PTAuth [27] attempts to provide protection against
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PACTight Instrumentation

- Identify sensitive pointers
- Assign random tags on allocation
- Sign a pointer on store and after use
- Authenticate a signed pointer on load
- Remove random tags on deallocation

1:  typedef int (*FP_t)(char *);
2:  int A(char *);
3:  pct_add_tag(&A, 8, 1);
4:  void handleReq(char *input) {
5:    FP_t *p;
6:    char buf[10];
7:    p = &A;
8:    pct_sign(&p);
9:    // stack buffer overflow
10:  strcpy(buf, input);
11:  // p can be corrupted
12:  pct_auth(&p, p);
13:  (*p)("Hello, PACTight!");
14:  pct_sign(&p);
15:  pct_rm_tag(p);
16:  return;
17: }

Source
Code Clang IR

Protected
Binary

PACTight Library (compiler-rt)

- Assign a random tag (pct_add_tag)
- Sign a pointer (pct_sign)
- Authenticate a pointer (pct_auth)
- Remove a random tag (pct_rm_tag)

PAC Instructions
pacia, autia, xpac, etc.

tag type size array size

... ......

Metadata Store

Compile Time Runtime

Instrumented Program

Figure 2: PACTIGHT design. At compile time, PACTIGHT instruments the allocation, assignment, use, and deallocation of
code pointers and data pointers that are reachable to a code pointer (i.e., sensitive pointers). PACTIGHT guarantees three pointer
integrity properties (§4.2), namely unforgeability, non-copyability, and non-dangling. At runtime, PACTIGHT generates a PAC
for sensitive pointers using a novel authentication scheme and checks the PAC upon pointer dereference (§4.4). PACTIGHT
automates its instrumentation in four different levels: forward edge, backward edge, C++ VTable, and sensitive pointers (§5).
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Figure 3: Three types of violations of pointer integrity.

temporal attacks. However, it assumes a weaker threat
model, defending against attackers with arbitrary write
only. Also, it is vulnerable to intra-object violation.
If two pointers within the same object are swapped,
PTAuth cannot detect this. Thus, the pointers are copy-
able in this case. Moreover, it only protects the heap and
does not handle stack protection, even from temporal
attacks. PACTIGHT defends against a strong attacker,
with arbitrary read and write capabilities, protects the
stack, heap, global variables, and defends against any
forging, copyability, and dangling of pointers.

4.4 PACTIGHT Runtime

This section describes the PACTIGHT runtime. We
first describe how PACTIGHT efficiently enforces the
pointer integrity properties (§4.4.1), then discuss the
PACTIGHT runtime library (§4.4.2), pointer operations
(§4.4.3) and the metadata store design (§4.4.4).

4.4.1 Enforcing PACTIGHT Pointer Integrity

In order to enforce the three properties, PACTIGHT re-
lies on the PAC modifier. The modifier is a user-defined
salt that is incorporated by the cryptographic hash into
the PAC in addition to the address. Any changes in either

Cryptographic
Hash

Secret
Key

Modifier
&p⊕tag(p)

Address

AddressPAC

AddressPAC

(a) PACTight signing (b) PACTight authentication
Address

Pointer p

 

Pointer p

Cryptographic
Hash

Secret
Key

Modifier
&p⊕tag(p)

Figure 4: Signing and authentication of a pointer variable p
in PACTIGHT. In addition to the unforgeability of p provided
by PA, PACTIGHT uses the address of a pointer (&p) and a
random tag associated with a pointee (tag(p)) to provide the
non-copyability and non-dangling properties.

the modifier or the address result in a different PAC, de-
tecting the violation. We propose to blend the address of
a pointer (&p) and a random tag (tag(p)) associated with
a memory object to efficiently enforce the PACTIGHT
pointer integrity property, as illustrated in Figure 4.
• Unforgeability: PAC by itself enforces the unforge-

ability of a pointer. PAC includes the pointer as one of
the inputs to generate the PAC. If the pointer is forged,
it will be detected at authentication.

• Non-copyability: PACTIGHT adds the location of the
pointer (&p) as a part of the modifier. This guarantees
that the pointer can only be used at that specific lo-
cation. Any change in the location by copying the
pointer (e.g., q = p) changes the modifier (&q) and
thus triggers an authentication fault.

• Non-dangling: PACTIGHT uses a random tag ID to
track the life cycle of a memory object. PACTIGHT
assigns a 64-bit random tag ID to a memory object
upon allocation and deletes it upon deallocation. This
is done for both stack and heap allocations. A random
tag ID of a memory object (tag(p)) is blended with the
location of the pointer (&p) to get the 64-bit modifier
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for PAC generation and authentication. This implies
that the life cycle of a PACTIGHT-sealed pointer is
bonded to that of a memory object. When memory
is deallocated (or re-allocated), PACTIGHT deletes
(or re-generates) the random tag. This invalidates all
pointers to that memory, enforcing the non-dangling
property.
By incorporating all these pieces of information (i.e.,

p, &p, and tag(p)) together into the PAC, PACTIGHT
effectively enforces the three security properties for
pointer integrity. Any change to any of the informa-
tion results in a PAC authentication failure. Note that
we used XOR to blend the location of a pointer and
pointee’s random tag into a single 64-bit integer.

4.4.2 Runtime Library

The PACTIGHT runtime library provides four APIs to
enforce pointer integrity. The PACTIGHT LLVM instru-
mentation passes described in §5 automatically instru-
ment a program using those APIs. The code for this
library is presented in §A.1.
1) pct_add_tag(p,tsz,asz) sets the metadata for a
newly allocated memory region. Besides a pointer p, it
takes two additional arguments – the size of an array ele-
ment (tsz) and the number of elements in the array (asz)
in order to support an array of pointers. The PACTIGHT
runtime assigns the same random tag for each array ele-
ment. For each element, its associated random tag and
size information are added to the metadata store. This
means that each array element’s metadata can be looked
up separately. The API should be called whenever mem-
ory is allocated (heap or stack). PACTIGHT assigns a
random tag to an object right after its allocation.
2) pct_sign(&p) signs a pointer with the associated
random tag that was generated by pct_add_tag. It gen-
erates a 64-bit modifier using the location of a pointer
(&p) and its associated random tag (tag(p)) by look-
ing up the metadata store. Then, it signs the pointer
with the modifier using a PA signing instruction (e.g.,
pacia, pacda). If a (compromised) program tries to sign
a pointer that does not have an associated random tag
(i.e., the program tries to access unallocated memory as
in a use-after-free vulnerability), PACTIGHT aborts the
program. This API should be called whenever a pointer
is assigned or after it is used.
3) pct_auth(&p,p+N) authenticates a pointer with the
associated metadata. Similar to pct_sign, it generates
the modifier using the pointer location (&p) and its associ-
ated random tag (tag(p+N)) by looking up the metadata

store, where N is the array index. N is zero in cases other
than arrays. The use of p+N allows support for pointer
arithmetic and enforcing spatial safety, which will be ex-
plained with an example in §4.4.3 (see Figure 5). Then,
it authenticates the pointer with the modifier using a PA
authentication instruction (e.g., autia, autda). If there
is no random tag or PA fails authentication, PACTIGHT
aborts the program. Any value of N that is not within the
bounds of the array will not return the correct tag, and
thus also causes a failed authentication. If the authentica-
tion is successful, it strips off the PAC from the pointer.
This API should be called before using the pointer.
4) pct_rm_tag(p) removes the metadata associated to
a pointer from the metadata store. Once the metadata is
deleted, any pct_auth to the deleted memory will fail
even if the memory is re-allocated. This API should be
called whenever memory (whether on the heap or the
stack) is deallocated.

4.4.3 Pointer Operations

Since a PACTIGHT-signed pointer has a PAC in its up-
per bits, care must be taken to not break the semantics
of existing C/C++ pointer semantics. In particular, we
take care of the following four cases:
1) PACTIGHT-signed pointer comparison: Even if
two pointers refer to the same memory address, their
PACs are different since the locations of the two pointers
are different (i.e., &p!=&q). Hence, PACTIGHT strips
off the PAC from the PACTIGHT-signed pointer before
comparison by looking for the icmp instruction.
2) PACTIGHT-signed pointer assignment: When as-
signing one signed pointer (source) to another signed
pointer (target), the target pointer should be signed again
with its location.
3) PACTIGHT-signed pointer argument: There are
functions that directly manipulate a pointer. For example,
munmap and free take a pointer as an argument and deal-
locate a virtual address segment or a memory block for a
given address. If their implementations do not consider
PAC-signed pointers, passing a PAC/PACTIGHT-signed
pointer can cause segmentation fault. For those func-
tions, PACTIGHT strips off the PAC before passing the
signed pointer as an argument.
4) PACTIGHT-signed pointer arithmetic:
PACTIGHT supports pointer arithmetic on arrays.
PACTIGHT assigns the same random tag for all
elements in an array, with the metadata keeping track of
the size of an element and the number of elements in
the array to efficiently enforce spatial safety. Figure 5
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Metadata Store

foo+0

1:   T *foo = malloc(50 * sizeof(T));
2:   pct_add_tag(foo, sizeof(T), 50);
3:   pct_sign (&foo);
4:   T *bar = foo + 9;
5:   bar = pct_auth(&foo, foo+9);
6:   pct_sign (&bar);
7:   T* baz = bar + 3;
8:   baz = pct_auth(&bar, bar+3);
9:   pct_sign (&baz);
10: T *qux = foo + 100;
11: qux = pct_auth(&foo, foo+100);
12: pct_sign (&qux);

13: free(foo);
14: pct_rm_tag(foo); 

tag type size array size

r

..

r

r

r

..
..

foo+9

foo+12

foo+100

..

foo+50

X

//Clears all the “r” tags.

Figure 5: Example of PACTIGHT handling array operations.

shows a simplified representation of the metadata.
PACTIGHT first assigns the same random tag r to
all 50 array elements after the array allocation (Line
2). Each element has its own metadata. In Line 5,
PACTIGHT successfully authenticates foo+9 using
pct_auth(&foo,foo+9). PACTIGHT successfully
authenticates bar+3 in Line 8, since bar+3 is foo+12,
and is within the array boundary. On the other hand,
Line 10 violates spatial memory safety, and PACTIGHT
throws an exception at Line 11. This is because
tag(foo+100) either does not exist or has a different
tag. Figure 11 shows the code of the runtime library.

The mechanism works the same for temporal memory
safety; a freed object will not have a tag (Line 14), and
newly allocated objects in the same location will have
a different tag. Thereby, PACTIGHT can effectively re-
ject spatial and temporal memory violations. Note that
PTAuth [27] performs “backward search” to find an ar-
ray base address, which is not necessary in PACTIGHT.

4.4.4 Metadata Store

PACTIGHT maintains a metadata store for allocated
memory objects. For each allocated memory object, the
metadata store maintains a random tag, the size of each
individual element (or type size), and the number of ele-
ments in an array (or array size). Non-array objects will
be treated as an array having a single element. We use
either a 64-bit (default) or a 32-bit tag and we compare
the memory overhead between both tag sizes in §7.3.1.

We implemented the metadata store as a linear open
addressing hash table (base + offset) using the address
(i.e., p) as the key. The base address is kept in a reserved
register, X18, to avoid leaking the metadata location (i.e.,
stack spill). The metadata store is initialized when the
program starts and is maintained by PACTIGHT’s run-
time library. An entry in the metadata store is allocated
and deallocated using pct_add_tag and pct_rm_tag, re-

spectively. Whenever PACTIGHT needs to sign or au-
thenticate (pct_sign, pct_auth), it looks up the meta-
data store to get the associated random tag and to check
if the accessed memory is valid or not. PACTIGHT relies
on sparse address space support of the OS.

4.4.5 A Running Example

The code snippet in Figure 2 (right) shows how
PACTIGHT APIs are used to protect a local function
pointer p. When an object gets allocated (Line 2),
pct_add_tag allocates the metadata by setting a ran-
dom tag and all the associated metadata. The number of
elements and type size can be determined statically by
analyzing the LLVM IR. Whenever a stack variable is as-
signed, the PAC is added with pct_sign (Lines 7, 8). If
the pointer is dereferenced (Line 13) or if any change in
assignment happens to the pointer legitimately, the PAC
is authenticated (pct_auth) (Line 12) and a new PAC
is generated for the new pointer with pct_sign (Line
14). When a pointer gets deallocated (after the return
on Line 16, since we are on the stack), the pointer is au-
thenticated and all metadata is removed (pct_rm_tag).
This is done by reading the type size and array size from
the metadata and removing the metadata accordingly.

5 PACTIGHT Defense Mechanisms
This section presents the PACTIGHT defense mech-
anisms built on top of the PACTIGHT runtime. The
PACTIGHT compiler passes automatically instrument
all globals, stack variables, and heap variables, inserting
the necessary PACTIGHT APIs. We implement four de-
fense mechanisms: 1) Control-Flow Integrity (forward
edge protection), 2) C++ VTable protection, 3) Code
Pointer Integrity (all sensitive pointer protection), and
4) return address protection (backward edge protection).

5.1 Control Flow Integrity (PACTIGHT-CFI)

PACTIGHT-CFI guarantees forward-edge control-flow
integrity by ensuring the PACTIGHT pointer integrity
properties for all code pointers. It authenticates the PAC
on a function pointer at legitimate function call sites.
At all other sites, the code pointer is sealed with the
PACTIGHT signing mechanism so it cannot be abused.
Any direct use of a PACTIGHT-signed pointer results in
a segmentation fault, causing illegal memory access.
Instrumentation overview. In order to prevent any mis-
use and enforce all three security properties for a code
pointer, PACTIGHT-CFI should set metadata upon allo-
cation and remove it upon deallocation. Also, a function
pointer should always be authenticated before every le-
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gitimate use and it should be signed again afterwards.
The PACTIGHT-CFI instrumentation passes accurately
identify and instrument all instructions in the LLVM IR
that allocate, write, use, and deallocate code pointers.
Identifying code pointers. PACTIGHT-CFI identifies
all code pointers using LLVM type information. Since
code pointers can be present inside composite types (e.g.,
struct or an array of struct), PACTIGHT-CFI also re-
cursively looks through all elements inside a composite
type. We specially handle the case that a code pointer
is manipulated after it is converted to some universal
pointer type (e.g., void*). For example, for memcpy and
munmap which take void* arguments, PACTIGHT-CFI
gets the actual operand type first and instrumentation
is done accordingly. This is not only done for memcpy
and munmap, but for all universal pointer types. We look
ahead for when they are typecasted (i.e., BitCast in
LLVM IR) to get the original type accordingly
Instrumenting PACTIGHT APIs. Setting the meta-
data by instrumenting pct_add_tag is done immedi-
ately after all code pointer allocations. This is done
for all global, stack and heap variables. In the case of
initialized global variables, pct_add_tag and pct_sign
are appended to the global constructors. In this way,
PACTIGHT-CFI maintains the appropriate metadata for
all global variables during program execution.

If the destination operand of the store instruction is
a code pointer, pct_sign is instrumented right after the
store instruction to sign the code pointer.
pct_auth must be called before any use of a code

pointer. Specifically, PACTIGHT-CFI looks for the rel-
evant load and call instructions and it instruments
pct_auth immediately before the instructions. If the
authentication fails, the top two bits of the pointer are
flipped meaning any use of the pointer causes a segmen-
tation fault, effectively denying any attack. As the PAC
authentication instructions (e.g., autia) strips off the
PAC, the PAC should be added again after the function
call. Thus, PACTIGHT-CFI replaces the stripped pointer
with the signed version after indirect call instructions.
This ensures that a PAC is always present.

Whenever a code pointer is deallocated (e.g., free,
munmap), PACTIGHT-CFI removes the metadata by in-
strumenting pct_rm_tag before the deallocation. For
stack variables, pct_rm_tag is instrumented right before
return, and it removes the metadata from the entire
stack frame at once, from the first variable to the last
variable that has any metadata set.
Summary. PACTIGHT-CFI is precise and efficient by

enforcing the PACTIGHT pointer integrity properties
and leveraging hardware-based PA. Moreover, it pro-
vides the Unique Code Target (UCT) property [33] be-
cause ensuring the PACTIGHT pointer integrity proper-
ties implies that the equivalence class (EC) size (i.e., the
number of allowed legitimate targets at one call site) is
always one. Thus, it defends against all ConFIRM [40]
attacks, which essentially rely on the presence of more
than one legitimate targets in an EC and replace an indi-
rect call/jump target with another allowed target.

5.2 C++ VTable Protection (PACTIGHT-VTable)

C++ relies on virtual functions to achieve dynamic poly-
morphism. At every virtual function call, a proper func-
tion is used in accordance with the object type. The
mapping of an object type to a virtual function is done
by the use of a virtual function table (VTable) pointer,
which is a pointer to an array of virtual function pointers
per object type. A VTable pointer is initialized in the
object’s constructor and it is valid until an object is de-
structed. Attacking the virtual function table pointer is a
common exploit in C++ programs [18, 54, 63].
Identifying VTable pointers. PACTIGHT-VTable
identifies a VTable pointer in a C++ object by analyzing
types in LLVM. It investigates all composite types and
checks if it is a class type having one or more virtual
functions. If so, it marks the first hidden member of the
class as a VTable pointer. PACTIGHT-VTable also han-
dles dynamic_cast<T>, since dynamic_cast<T> is only
valid for a class with at least one virtual function pointer,
so it has a virtual function table, and thereby they all are
already considered sensitive types.
Instrumenting PACTIGHT APIs. Upon a C++ type
having a virtual function allocated, PACTIGHT-VTable
instruments pct_add_tag.It instruments pct_sign im-
mediately after the VTable pointer is assigned by the
object’s constructor. This adds the PAC to the pointer
to seal it. Then, pct_auth is instrumented right before
loading the VTable pointer. A failed authentication flips
the top two bits of the pointer, rendering it unusable. Cor-
respondingly, pct_rm_tag is instrumented right before
the object is destroyed (deallocation).

5.3 Code Pointer Integrity (PACTIGHT-CPI)

PACTIGHT-CPI increases the coverage of PACTIGHT-
CFI to guarantee integrity of all sensitive point-
ers [38]. Sensitive pointers are all code pointers
(i.e., PACTIGHT-CFI coverage) and all data pointers
that point to code pointers. It is possible to hijack
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1 /** ==== nginx/http/ngx_http_variables.h ==== */
2 typedef struct ngx_http_variable_s ngx_http_variable_t;
3

4 // a function pointer type (i.e., sensitive type)
5 typedef ngx_int_t (*ngx_http_get_variable_pt)(...);
6

7 struct ngx_http_variable_s {
8 ngx_str_t name;
9 // sensitive function pointer

10 ngx_http_get_variable_pt get_handler;
11 // ...
12 }; // a sensitive data type
Figure 6: Example of a sensitive data pointer in the (simpli-
fied) NGINX source code.

control-flow by corrupting a sensitive data pointer be-
cause it can reach a code pointer. Figure 6 shows
an example of sensitive pointers from NGINX. A
function pointer type ngx_http_get_variable_pt at
Line 5 is a sensitive code pointer. Also, a struct type
ngx_http_variable_s at Line 7 is a sensitive data type
because it has another sensitive pointer (get_handler at
Line 10) in it. If a sensitive data pointer or its array in-
dex are corrupted, an attacker can hijack the control-flow
without directly corrupting the function pointer.

Identifying sensitive pointers. PACTIGHT-CPI ex-
pands the type analysis of PACTIGHT-CFI to include all
sensitive pointers. It classifies a composite type that con-
tains a function pointer as a sensitive type. Then, it recur-
sively classifies a composite type that contains any sen-
sitive pointer in it as a sensitive type until it cannot find
any more sensitive types. We over-approximate when
detecting security-sensitive pointers. That is, we regard a
pointer as security-sensitive if we cannot determine if it
is non-security-sensitive statically (e.g., C union). This
approach may add extra instrumentation, however, it
will not compromise PACTIGHT ’s security guarantees.

Instrumenting PACTIGHT APIs. Instrumentation
is then done in a similar manner to PACTIGHT-CFI by
instrumenting all instructions that allocate, store, modify
and use sensitive pointers. In case the pointers are of
universal type (i.e., void* or char*), PACTIGHT-CPI
gets its actual type by looking ahead for a typecast and
then instrumentation is done accordingly.
5.4 Return Address Protection (PACTIGHT-RET)

Protecting return addresses is critical because they are,
after all, the root of ROP attacks. Meanwhile, the return
address protection scheme should impose minimal per-
formance overhead because function call/return is very
frequent during program execution. We aim to minimize
the signing/authentication overhead without compromis-
ing the PACTIGHT pointer integrity properties.

No non-dangling in return address. One interesting

fact is that a return address cannot be a dangling pointer.1

Hence, the non-dangling property doesn’t need to be
enforced and random tags are unnecessary. Not using a
tag offers large performance benefits as metadata store
lookup cost to get the random tag can be removed.
Binding all previous return addresses. Instead of
blending the location of a return address in a stack to
provide the non-copyability property, we use the signed
return address of a previous stack frame. Since the
stack distance to a return address in a previous stack
frame is determined at compile time, accessing the pre-
vious return address with a constant offset binds the
current return address to the relative offset of the pre-
vious stack frame (i.e., the current stack frame). Hence
we can achieve the non-copyability property for return
addresses. In addition, by blending the signed return ad-
dress of a previous stack frame, we chain all previous re-
turn addresses to calculate the PAC of the current return
address. This approach is inspired by PACStack [42].
Both PACTIGHT-RET and PACStack incorporate the
entire callstack in the modifier to prevent the reuse attack.
In regards to dynamic stack allocation, the alloca()
function can dynamically adjust the stack frame size.
To support dynamic stack allocation, PACTIGHT-RET
uses LLVM intrinsics, such as getFrameInfo() and
getCalleeSavedInfo(), that allow us to find the pre-
vious stack frame and calculate the distance correctly.
Signing and authentication of a return address. Our
optimized sign/authentication scheme for return ad-
dresses is as follows. We blend a caller’s unique function
ID and the signed return address from the previous stack
frame to generate the modifier. This blending allows us
to achieve the non-copyability property by chaining all
previous return addresses (binding a return address to
a control-flow path), alongside the guarantee of the un-
forgeability property achieved by the PAC mechanism.
Instrumentation is done in the MachineIR level during
frame lowering. Frame lowering emits the function pro-
logues and epilogues. The PAC is added at the function
prologue and authenticated at the function epilogue. The
LLVM-assigned function ID is unique due to the use of
link time optimization (LTO).
5.5 Optimization to Reduce PAC Instructions

The main source of overhead in PACTIGHT would
be due to the cryptographic operations done by the

1Precisely speaking, a return address can be a dangling pointer for
Just-In-Time (JIT) compiled code in a managed runtime (e.g., Java,
Python). However, protecting control-flow hijacking in a managed
runtime is the out of scope for PACTIGHT.
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QARMA algorithm. This is done every time a PAC in-
struction is executed. As discussed in §4.4.5, pct_auth
strips the PAC from the pointer and pct_sign is added
again after the pointer is used to add the PAC again,
thus maintaining the seal on the pointer. Thus, instead of
re-adding the PAC with pct_sign, we save the original
pointer with the PAC before pct_auth in a temporary
register, and overwrite the stripped pointer with a PACed
pointer without needing to call pct_sign. Note that our
code generation pass prevents the stack spill of the tem-
porary register to avoid the register from being restored.

6 Implementation
Our prototype consists of 4014 lines of code (LoC),
with 3237 LoC for the LLVM pass, 656 LoC for
the PACTIGHT runtime library, and 121 LoC for
the AArch64 backend. PACTIGHT-CFI, PACTIGHT-
VTable and PACTIGHT-CPI are all implemented in the
LLVM IR level while PACTIGHT-RET is implemented
in the AArch64 backend. The PACTIGHT runtime li-
brary is integrated with LLVM as part of compiler_rt.
We use CSPRNG seeded by hardware RNG (RNDR
in ARMv8) [4] for random tag generation. To harden
our prototype, we used different key types for sensitive
function pointers (pacia, autia), sensitive data pointers
(pacda, autda), and return addresses (pacib, autib).

We apply several optimizations to PACTIGHT. First,
we use Link Time Optimization (LTO), which com-
bines all the object files into one file. Then, we inline
all our PACTIGHT runtime library functions. Finally,
we implement the additional optimization, discussed
in §5.5, to reduce PAC instructions. The evaluation
of the impact of these optimizations is discussed in
§7.3.2. We also make our code for PACTIGHT public at
https://github.com/cosmoss-jigu/pactight.

7 Evaluation
We evaluate PACTIGHT by answering the following:
• How effectively can PACTIGHT prevent not only syn-

thetic attacks but also real-world attacks by enforcing
PACTIGHT pointer integrity properties? (§7.2)

• How much performance and memory overhead does
PACTIGHT impose? (§7.3)

7.1 Evaluation Methodology

Evaluation environment. We ran all evaluations on
Apple’s M1 processor [10], which is the only commer-
cially available processor supporting ARMv8.4 architec-
ture with ARM PA instructions. Specifically, we used
an Apple Mac Mini M1 [9] equipped with 8GB DRAM,

4 big cores, and 4 small cores. We ported our prototype
to Apple’s LLVM 10 fork [1]. For all applications, we
enabled O2 and LTO optimizations for fair comparison.
Evaluation of C applications. We ran all C applica-
tions with real ARM PA instructions. In this case, we
turned off all Apple LLVM’s use of PA [11] to avoid the
conflicting use of PA instructions.
Evaluation of C++ applications. During initial evalu-
ation, we found that the use of PA instructions is built
into Apple’s standard C++ library. We have investigated
using Ubuntu Linux [21] on the M1 to work around
this problem. At time of writing, the Linux kernel on
Ubuntu/M1 does not support PA – the kernel does not
activate PA during the boot procedure – so userspace
applications cannot use PA instructions.

For C++ applications, we use two different ap-
proaches to validate if PACTIGHT’s instrumentation is
correct and to get an accurate performance estimation.
For the correctness testing, we ran all C++ applications
on ARM Fixed Virtual Platform (FVP) [12], which is an
ARM hardware platform simulator that supports pointer
authentication. We used the FVP only to test correctness,
since it is not a cycle-accurate simulator. We ran Linux
on FVP to run C++ applications, and we modified the
Linux kernel and bootloader to activate ARM PA. All
our C++ applications passed the correctness testing with
FVP. To simulate the overhead of a PA instruction and
to get accurate performance estimates on real hardware,
we measured the time to execute a PA instruction and
found that seven XOR (eor) instructions take almost the
same time – 0.15% faster – to execute one PA instruction
on the Apple Mac Mini M1. Similarly, Lilijestrand et
al. [43] also replaced a PA instruction with four eor in-
structions to estimate the performance overhead, which
is more optimistic than our measurement on hardware.

7.2 Security Evaluation

In this section, we evaluate PACTIGHT’s effectiveness
in stopping security attacks using three real-world ex-
ploits (§7.2.1) and five synthesized exploits (§7.2.2).

7.2.1 Real-World Exploits

We evaluated PACTIGHT with three real-world exploits
to test its effectiveness against real vulnerabilities.
(1) CVE 2015-8668. This is a heap-based buffer over-
flow [24] corrupting a sensitive pointer in the libtiff
library. The heap overflow overwrites a function pointer
in the TIFF structure, which allows attackers to achieve
arbitrary code execution. PACTIGHT-CFI/CPI success-
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fully detects this and stops it from completing by enforc-
ing pct_auth on the corrupted function pointer.
(2) CVE-2019-7317. This is a use-after-free ex-
ploit [25] in the libpng [3] library. The png_image_free
function is called indirectly and frees memory that
is referenced by image, a sensitive pointer. image is
then dereferenced. Since PACTIGHT-CPI does recur-
sive identification, image is instrumented. When image
gets dereferenced after the free, PACTIGHT-CPI will
detect that no metadata exists and halts the execution.
(3) CVE-2014-1912. This is a buffer overflow vulnera-
bility [55] in python2.7 that happens due to a missing
buffer size check. An attacker can corrupt a function
pointer in the PyTypeObject and achieve arbitrary code
execution. PACTIGHT-CFI/CPI detects this by detect-
ing the corrupted function pointer with pct_auth.

7.2.2 Synthesized Exploits

CFIXX test suite. We evaluated PACTIGHT with
five synthesized attacks for C++ to demonstrate how
PACTIGHT-VTable can defend against virtual function
pointer hijacking attacks, COOP attacks [54] – an at-
tack that crafts fake C++ objects. We used CFIXX C++
test suite [51] by Burow et al. [18]. It contains four
virtual function pointer hijacking exploits (FakeVT-sig,
VTxchg-hier, FakeVT, VTxchg) and one COOP exploit.
To make the test suite more similar to real attacks, we
modified the suite to use a heap-based overflow rather
than directly overwriting with memcpy. This modifica-
tion is similar to a synthesized exploit in OS-CFI [36].
PACTIGHT-VTable detects all the exploits by enforc-
ing pct_auth on the virtual function pointer before the
virtual function call. The COOP attack crafts a fake ob-
ject without calling the constructor and utilizes a virtual
function pointer of the fake object. PACTIGHT-VTable
detects this due to the fact that it was never initialized
and thus pct_auth fails.
Vulnerable code to other PAC defenses. We describe
here a synthesized exploit that bypasses PARTS [43]
and PTAuth [27], relying on the security guarantees pro-
vided by the non-copyability property. The security ben-
efits of the non-copyability property are demonstrated
by the PAC reuse attack in the vulnerable code in Fig-
ure 7. PARTS [43] is vulnerable to this attack while
PACTIGHT is not. If two pointers have the same modi-
fier (type-id in PARTS) and point to the same address,
then the processor will generate the same PAC, and thus
they can be used interchangeably at a different code loca-
tion. This is possible in PARTS if both pointers have the

1 T foo,bar;
2 foo.funcptr = &printf;
3 bar.funcptr = &system;
4 T *p = &foo; // p stores a valid PAC of foo
5 T *q = &bar; // q stores a valid PAC of bar
6 // An attacker performs arbitrary read/write here
7 // (by exploiting a known vulnerability)
8 // to overwrite p as q, i.e., p = q;
9 // now p stores a valid PAC of &bar

10 p->funcptr(); // Runs system() in PARTS
11 // because type of p and q are the same
Figure 7: Example of vulnerable code that PACTIGHT de-
fends against but PARTS [43] cannot.
same LLVM ElementType. This is similar in concept to
the COOP attack in terms of pointer manipulation. Our
incorporation of a pointer location (&p) into the modifier
with the non-copyability property blocks this attack by
binding a signed PAC to a specific pointer location in
the code. This binding will not allow a signed pointer to
be used from a different pointer location.

7.3 Performance Evaluation

7.3.1 Benchmarks

Benchmark applications. For our performance evalu-
ation, we use three benchmarks: SPEC CPU2006 [32],
nbench [47], and CoreMark [2], and one real-world ap-
plication, NGINX web server [5]. In order to run the
SPEC CPU2006 benchmark suite, we ported each SPEC
benchmark to Apple M1 and built it from scratch. We
were not able to run one benchmark, 403.gcc, on the
Apple M1 even with Apple’s vanilla Clang/LLVM com-
piler. We suspect a bug in the MacOS/M1 toolchain.
We ran all benchmark applications with real PA instruc-
tions except for seven C++ benchmarks in the SPEC
benchmark. For the C++ benchmarks, we replaced a PA
instruction with seven eor instructions to emulate the
overhead of the PA instructions as discussed in §7.1.
Performance overhead. Figure 8 shows the perfor-
mance of the PACTIGHT defenses on the individ-
ual SPEC benchmarks, nbench, and CoreMark. The
SPEC benchmarks have a geometric mean of 0.64%,
1.57%, and 5.77% for PACTIGHT-RET, PACTIGHT-
CFI+VTable+RET, and PACTIGHT-CPI, respectively.
The geometric means of all benchmark applications
are 0.43%, 1.09%, and 4.07% for PACTIGHT-RET,
PACTIGHT-CFI+VTable+RET, and PACTIGHT-CPI,
respectively. As can be seen, PACTIGHT has very
low overhead on almost all benchmarks and across
all the protection mechanisms. The exceptions here
are 453.povray, 471.omnetpp, and 483.xalancbmk for
PACTIGHT-CPI. We discuss these further in §A.4.

We evaluated NGINX on the Apple M1 using its 4 big
cores to stress the machine. We used the same configu-
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ration used to bench NGINX TLS transactions per sec-
ond [48]. We used the HTTP benchmarking tool wrk [29]
to generate concurrent HTTP requests. We ran wrk on an-
other machine under the same network. Each wrk spawns
three threads where each thread handles 50 connections.
We observed a small performance overhead: 4% for
PACTIGHT-CFI and 5.57% for PACTIGHT-CPI.

Memory overhead. In order to see how much addi-
tional memory is used by PACTIGHT’s metadata store,
we measured the maximum resident set size (RSS) dur-

ing the execution of the SPEC CPU2006 benchmarks.
We ran the SPEC benchmarks with the PACTIGHT-CPI
protection because it is the highest level of protection
in PACTIGHT, thus it requires the largest number of
entries in the metadata store. We used both 64-bit and
32-bit tag sizes to measure the gain if we used a smaller
tag. The size of the metadata is 16 bytes in the case of a
64-bit tag, and 12 bytes in the case of a 32-bit tag. Fig-
ure 9 shows the results of our measurements. In spite of
measuring the highest security mechanism with the most
instrumentations, PACTIGHT imposes an overhead of
23% on average for 64-bit tags and 19% on average for
32-bit tags. The memory overhead is proportional to
O(n) where n is the number of sensitive pointers, with
the metadata size being either 2× the size of the pointer
(64-bit tag) or 1.5× the size of the pointer (32-bit tag).

7.3.2 Impact of Optimizations

Here we showcase the impact of the optimizations dis-
cussed in §5.5 and §6. We added three optimizations to
PACTIGHT to improve performance: Link Time Op-
timization (LTO), inlining of PACTIGHT runtime li-
brary functions (INLN), and overwriting the stripped
pointer with a PACed pointer (OVWRT). Figure 10
shows the performance overhead of PACTIGHT-CPI
with and without the optimizations in various configura-
tions. As can be seen, the optimizations were critical to
greatly improving PACTIGHT’s performance.

8 Discussion and Limitations

Information leakage attack on the metadata store.
In our threat model, an attacker is able to access the
PACTIGHT metadata store while it is probabilisti-
cally hidden using address space layout randomization
(ASLR). Even if the PACTIGHT metadata is leaked, an
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attacker is not able to exploit the leaked information. In
order for an attacker to take advantage of the leakage,
she has to launch an attack from a different location and
this is already protected by the non-copyability prop-
erty. The only part of the modifier that gets leaked is
the random tag, but the location (&p) in the modifier
still enforces the non-copyability property. In regards to
legal and illegal pointers, PACTIGHT always authenti-
cates the right hand side of a PACTight-signed pointer
assignment. Thus, if a pointer in the right hand side is il-
legal, its authentication will fail. In this way, PACTIGHT
prevents the propagation of illegal pointers. Another hy-
pothetical case is that an attacker reuses a random tag to
bypass the non-dangling property. While such an attack
is possible in theory, the bar is very high in practice. An
attacker cannot reuse dangling pointers at an arbitrary
location due to the non-copyability property, and this
significantly limits the attack. Moreover, we argue this
is not a fundamental flaw in PACTIGHT’s design. The
random tag can be enforced using ARM’s new Memory
Tagging Extension (MTE) feature [13]. The presence of
MTE will mitigate the random tag reuse attacks since
the tags are protected in physical memory that can never
be accessed by an attacker. PACTIGHT can easily be
extended to utilize MTE as a tag store.

9 Related Work

In this section, we only discuss related studies that have
not been discussed previously .
Cryptographic pointer defenses. CCFI [46] uses
MACs to protect return addresses, function pointers,
and VTable pointers. Conceptually, the use of MACs is
similar to PA. But, since CCFI does not benefit from the
hardware-accelerated PA instructions, it has an average
of 52% overhead across SPEC CPU2006 benchmarks.
Integrity policies. Control-Flow Integrity (CFI) [6]
restricts the valid target sites for indirect control-flow
transfers. Static CFI schemes are vulnerable to control-
flow bending [19]. Since PACTIGHT-CFI-VTable seals
a pointer with its location and a random tag, this lim-
its the feasibility of a reuse attack. Other dynamic ap-
proaches require additional threads to analyze data from
Intel Processor Trace [28, 31, 33, 45] limiting scalability.

Code Pointer Integrity (CPI) [38] protects sensitive
pointers (code pointers and pointers that refer to code
pointers) by storing the sensitive pointers in a seperate
hidden memory region. Return addresses are stored on
a safe stack. PACTIGHT-CPI provides temporal safety
to sensitive pointers, which CPI does not, and protects

virtual function pointers in addition to sensitive pointers,
all while having a lower overhead across all defenses.

CFIXX [18] protects VTable pointers by enforcing
Object Type Integrity (OTI). CFIXX stores metadata
on construction and checks the metadata at the virtual
function call site. CFIXX incurs an overhead of 4.98%.
PACTIGHT-CFI+VTable incurs lower overhead (1.98%)
whilst providing stronger guarantees by enforcing CFI.
Temporal memory safety. Explicit pointer invalida-
tion is a common strategy to enforce temporal memory
safety. DangNull [39], DangSan [60], FreeSentry [62],
pSweeper [44], and BOGO [64] invalidate all pointers
to an object when the object is freed. These schemes
typically incur high costs. CRCount [57] implicitly in-
validates pointers by using reference counting. This ap-
proach comes at memory costs since some objects may
never be freed. CETS [50] uses disjoint metadata to
check if an object still exists upon pointer dereferences.
MarkUs [7] is a memory allocator that protects from use-
after-free attacks. It quarantines freed data and prevents
reallocation until there are no dangling pointers. In con-
trast, PACTIGHT offers broader protection and protects
sensitive pointers from memory corruption attacks.

10 Conclusion
We presented PACTIGHT, an efficient and robust mecha-
nism to guarantee pointer integrity using ARM’s Pointer
Authentication mechanism. We identified three secu-
rity properties PACTIGHT enforces to ensure pointer
integrity: (1) Unforgeability: a pointer cannot be forged
to point to an unintended memory object. (2) Non-
copyability: a pointer cannot be copied and re-used ma-
liciously. (3) Non-dangling: a pointer cannot refer to
an unintended memory object if the object has been
freed. We implememented PACTIGHT with four de-
fense mechanisms, protecting forward edge, backward
edge, virtual function pointers, and sensitive pointers.
We demonstrated the security of PACTIGHT against
real and synthesized attacks and showcased its low per-
formance and memory overhead, 4.07% and 23.2%, on
average respectively, using real PAC instructions.
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Appendix
We describe the PACTIGHT runtime library functions in
detail (§A.1), its collision likelihood (§A.2), showcase
PACTIGHT instrumentation statistics (§A.3), and finally
analyze the high overhead benchmarks (§A.4).

A.1 PACTIGHT Runtime Library Functions
Figure 11 presents the (simplified) PACTIGHT li-
brary function code. The two omitted functions,
meta_hashtable_get and meta_hashtable_set, re-
trieve and set the metadata, respectively.

1 /** == Pseudocode for the library
2 * functions in PACTight== **/
3

4 pct_add_tag(void* p, int tsz, int asz){
5 tag = CSPRNG(); // Generate random tag
6 for(int i = 0; i < asz; i++){
7 meta_hashtable_set(p, tag, tsz, asz - i);
8 p = p + tsz;
9 }

10 }
11

12 pct_sign(void** p){
13 metadata* meta = meta_hashtable_get(*p);
14 pac_modifier = p ^ meta->tag;
15 __asm volatile ("pacia %x[pointer], %x[modifier]\n"
16 : [pointer] "+r" (*p)
17 : [modifier] "r"(pac_modifier)
18 );
19 }
20

21 pct_auth(void** p, void* p_index){
22 metadata* meta = meta_hashtable_get(p_index);
23 pac_modifier = p ^ meta->tag;
24 __asm volatile ("autia %x[pointer], %x[modifier]\n"
25 : [pointer] "+r" (*p)
26 : [modifier] "r"(pac_modifier)
27 );
28 }
29

30 pct_rm_tag(void* p){
31 metadata* meta = meta_hashtable_get(p);
32 int asz = meta->asz;
33 int tsz = meta->tsz;
34 for(int i = 0; i < asz; i++){
35 meta_hashtable_remove(p);
36 p = p + tsz;
37 }
38 }

Figure 11: PACTIGHT runtime library functions.

A.2 Collision Likelihood of PACTIGHT

A determined attacker can attempt to break our
PACTIGHT scheme using modifier collisions. For ex-
ample, if an attacker allocates a PAC’d pointer p with
random tag A at location B, then deallocates and reallo-
cates p with a different random tag C. Then, the attacker
can reuse p at a different location D if (A XOR B) col-

lides with (C XOR D). The probability that this collision
occurs is extremely low. Because we XOR the modifier
with a 64-bit random tag, the distribution of PAC modi-
fiers is uniformly random with 64 bits of entropy (i.e.,
264); therefore, an attacker cannot practically break the
non-copyability property via modifier collisions.

Alternatively, an attacker can attempt to break the
scheme using PAC collisions. By reusing a sensitive
pointer at many different locations, there is a chance (al-
beit a very low probability) that the same PAC could be
generated even though the modifiers are different. This
would require an expected 2b guesses, where b is the
number of bits available for PAC (b = 16 in ARMv8.3-
A). The birthday problem [58] does not apply in this case
since an attacker has no way to efficiently bruteforce
many pointers at the same time. This attack is equivalent
to attempting to forge an authenticated pointer. Conse-
quently, these collision attacks are not feasible against
the metadata scheme that PACTIGHT proposes.

A.3 Instrumentation Statistics
Table 2 shows various instrumentation statistics for
PACTIGHT-CPI in SPEC CPU2006. These include
compilation time, binary size, the total and protected
number of loads and stores, and the number of instru-
mentations of pct_add_tag, pct_sign, pct_auth and
pct_rm_tag. As shown, PACTIGHT-CPI imposes a
marginal overhead in compilation time increase and bi-
nary size increase, 3.14% and 13.87%, respectively. For
some benchmarks, the overhead is not directly propor-
tional to the number of instrumentations. This is because
the instrumentations may be called several times in a
loop for example.

There are a few of these benchmarks that show zero
instrumentation. We investigated this and found that the
compiler optimizes out the sensitive load and store
instructions. Running PACTIGHT without compiler op-
timizations produces the instrumentations accordingly.
Thus, there are no false negatives with these benchmarks.

A.4 Analysis on High Overhead Benchmarks
Three benchmarks in SPEC CPU2006, namely
453.povray, 471.omnetpp and 483.xalancbmk, have
high performance overhead with PACTIGHT-CPI
than the rest of the benchmarks. In this section, we
analyze why these benchmarks have higher overhead
and suggest possible improvements.
453.povray. The overhead is mainly due to the loops
using sensitive data pointers inside. Specifically, the
struct Method_struct is one of the struct types in
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Benchmark
Name Compilation time Binary size Number

of stores

Number of
protected
stores

Percentage
of protected
stores

Number
of loads

Number
of protected
loads

Percentage
of protected
loads

Number of
pct_add_tag

Number of
pct_sign

Number of
pct_auth

Number of
pct_rm_tag

Vanilla PACTight Overhead Vanilla PACTight Overhead
400.perlbench (c) 318 366 15.09% 2616 2784 6.42% 15826 1083 6.84% 42753 9068 21.21% 310 1079 9064 46
401.bzip2 (c) 47 47 0.00% 208 240 15.38% 1754 11 0.63% 2602 150 5.76% 4 45 150 2
429.mcf (c) 25 25 0.00% 104 104 0.00% 252 0 0.00% 399 0 0.00% 0 0 0 0
433.milc (c) 120 122 1.67% 288 288 0.00% 889 16 1.80% 3201 35 1.09% 2 7 35 2
444.namd (c++) 114 115 0.88% 424 504 18.87% 2333 53 2.27% 6170 21 0.34% 41 64 21 35
445.gobmk (c) 286 297 3.70% 7696 8600 10.51% 4584 6 0.13% 17370 74 0.43% 8 10 74 6
447.dealII (c++) 1508 1516 0.53% 1488 1768 18.82% 41257 6204 15.04% 94791 8543 9.01% 2892 6745 8036 2867
450.soplex (c++) 408 434 6.37% 840 1072 27.62% 5409 254 4.70% 16665 724 4.34% 242 632 441 52
453.povray (c++) 625 653 4.48% 2496 3120 25.00% 15128 474 3.13% 25766 2247 8.72% 117 525 2029 36
456.hmmer (c) 141 148 4.96% 384 456 18.75% 3618 33 0.91% 8557 264 3.09% 16 28 264 16
462.libquantum (c) 32 33 3.13% 144 144 0.00% 270 0 0.00% 585 0 0.00% 0 0 0 0
458.sjeng (c) 61 62 1.61% 368 368 0.00% 1899 0 0.00% 3570 1 0.03% 1 1 1 1
464.h264ref (c) 296 304 2.70% 1248 1568 25.64% 11309 88 0.78% 27103 1659 6.12% 48 139 1663 11
470.lbm (c) 12 13 8.33% 104 104 0.00% 99 0 0.00% 269 0 0.00% 0 0 0 0
471.omnetpp (c++) 567 570 0.53% 2136 2528 18.35% 6007 1158 19.28% 8697 2890 33.23% 264 1206 2025 66
473.astar (c++) 34 35 2.86% 144 144 0.00% 708 0 0.00% 1191 2 0.17% 0 0 1 0
482.sphinx3 (c) 109 110 0.92% 384 416 8.33% 1421 20 1.41% 4716 152 3.22% 2 18 152 2
483.xalancbmk (c++) 3149 3624 15.08% 11184 19800 77.04% 39741 10834 27.26% 110595 35025 31.67% 3820 13207 33046 1065
Average/Total 3.14% 13.87% 152504 20234 13.27% 375000 60855 16.23% 7767 23706 57002 4207

Table 2: Instrumentation statistics for PACTIGHT-CPI in SPEC CPU2006.

453.povray that is considered to be sensitive. This struct
has a series of function pointers and is used like a virtual
function table. Pointers of type struct Method_struct
and its members are used in loop conditions and inside
loops. Since these pointers are sensitive, PACTIGHT-
CPI enforces protection on them. This means calling
pct_auth when they are dereferenced and re-adding the
PAC with pct_sign. This happens multiple times in one
loop iteration, causing extra overhead shown in Figure 8.
471.omnetpp and 483.xalancbmk. The main source of
the overhead is frequent virtual function call, much more
than other C++ benchmarks. For every virtual function,
PACTIGHT-CPI calls pct_auth to authenticate the vir-
tual function pointer and pct_sign to re-add the PAC.
Comparison to prior work. PACTIGHT-CPI’s over-
head in these three benchmarks is similar to the original
CPI [38]. Note that PACTIGHT-CPI has double the in-
strumentation, since it needs to authenticate and then re-
sign, whilst CPI would only compare with its metadata
with a single instrumentation. PARTS [43] does not eval-
uate SPEC CPU2006. Even though PTAuth [27] does
evaluate with a subset of the SPEC CPU2006 bench-
marks, they do not mention the performance numbers for
cc453.povray, 471.omnetpp and 483.xalancbmk. We
expect that these numbers would be quite high. PAC-
Stack [42] evaluates with SPEC CPU2017. Thus, we
could only compare definitively with the original CPI.
Possible improvement One of the main reasons over-
head is very high is because of instrumentation inside
loops. One could say that a possible solution would be
hoisting the authenticating and signing to be outside
loops, i.e., authenticate before entering a loop and sign
after the loop is done. In that way, authenticating and
signing would only be done once.
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