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ARM is becoming popular!

● More and more servers, data centers and 

high-performance computers are using ARM.

● Greater importance to have effective and efficient 

defenses for ARM in these environments.
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Memory safety is a serious problem!

3

Microsoft Product CVEs Google OSS (Open Source 
Software) Fuzz bugs

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/ https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
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Control-flow hijacking and use-after free attacks are critical!

Control-flow hijacking and use-after-free attacks are dangerous memory corruption attacks
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ARM Pointer Authentication

● Pointer Authentication Code (PAC) is generated by a cryptographic hash function.

● The PAC is then placed on the unused bits of the 64-bit pointer.
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ARM Pointer Authentication

● PAC signing: The algorithm takes 

the pointer and modifier, as well 

as a key, and generates a PAC.
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Current state-of-the-art PAC techniques
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PARTS-CFI
Lilijestrand et. al 
(USENIX SEC’19)
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Limitations of state-of-the-art PAC techniques

● Reliance on a modifier that can be repeated, thus attackers can reuse the PAC 

generated for one in the context of using the other. [PARTS-CFI SEC’19]
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● Reliance on the presence of a forward-edge CFI technique with the PAC defense 

mechanism. [PACStack SEC’21]

● Constrained threat model, defending only against attackers with just arbitrary write. 

The defense is not effective if the attacker has arbitrary read. 
[PTAuth SEC’21]
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PACTight Overview

We define three security properties of a pointer such that, if achieved, prevent pointers 

from being tampered with. 
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● Unforgeability: A pointer should always point to its legitimate object. 

● Non-copyability: A pointer can only be used when it is at its specific 

legitimate location.

● Non-dangling: A pointer cannot be used after its object has been freed.
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Introducing PACTight

The three properties:
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Introducing PACTight
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Introducing PACTight: Goal

● The importance of these properties stems from the fact that to hijack control-flow, 

at least one of these properties must be violated.

● PACTight tightly seals pointers and guarantees that a sealed pointer cannot be 

forged, copied, and is not dangling. 

● PACTight overcomes the limitations of previous approaches:
○ The non-copyability property prevents any PAC reuse.

○ PACTight protects all globals, stack variables and heap variables.

○ PACTight assumes a strong threat model that has both arbitrary read and write capabilities. 

24



Outline

● Introduction

● Background and related work

● Introducing PACTight

● PACTight design

● PACTight defense mechanisms

● Evaluation

● Conclusion

25



PACTight Design: Enforcing the properties

● In order to enforce the three properties, PACTight relies on the PAC modifier. 

● Any changes in either the modifier or the address result in a different PAC, detecting 

the violation.
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PACTight Design: Enforcing the properties

We propose to blend the address of a pointer (&p) and a random tag associated with a 

memory object (tag(p)) to efficiently enforce the PACTight pointer integrity property
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PACTight Design: Enforcing the properties
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PACTight Design: Enforcing the properties

Unforgeability: The PAC mechanism includes the pointer as one of the inputs to generate 

the PAC. If the pointer is forged, it will be detected at authentication.
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PACTight Design: Enforcing the properties

Non-copyability: PACTight adds the location of the pointer (&p) as part of the modifier. 

Any change in the location by copying the pointer triggers an authentication fault.
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PACTight Design: Enforcing the properties

Non-dangling: PACTight uses a random tag to track the lifecycle of a memory object. The 

lifecycle of a PACTight-sealed pointer is bonded to that of the object.
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PACTight structure and overall design

● PACTight instruments programs to guarantee the three properties.

● PACTight automates its instrumentation in four different levels: forward-edge, 

backward-edge, C++ VTable, and sensitive pointers
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Source code

FP_t *p = malloc(8); 
p = &func; 
(*p)("Hello, PACTight"); 

Clang IR
PACTight 

Instrumentation

Protected Binary
PACTight library 

(compiler-rt)

Instrumented Program

FP_t *p = malloc(8); 
p = &func; 
pct_sign(&p); 
pct_auth(&p, p); 
(*p)("Hello, PACTight!"); 
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PACTight Defense Mechanisms 

The PACTight compiler automatically instruments all globals, stack variables and heap 

variables in a program, inserting the necessary PACTight APIs. 

We implement four defense mechanisms: 

● Control-Flow Integrity (forward edge protection) 

● C++ VTable pointers protection

● Code Pointer Integrity (all sensitive pointer protection)  [Kuznetsov et. al, OSDI 2014]

● Return address protection (backward edge protection)
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PACTight Defense Mechanisms: PACTight-CPI

● PACTight-CPI guarantees the PACTight pointer integrity properties for all sensitive 
pointers.

● Sensitive pointers are all code pointers and all data pointers that point to code 
pointers recursively. 

● It authenticates the PAC on a sensitive pointer at legitimate sensitive sites. At all 
other sites, the pointer is sealed so it cannot be abused.

● PACTight-CPI identifies all sensitive pointers using LLVM type information. It 
recursively looks through all elements inside a composite type.
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Evaluation Questions

● How effectively can PACTight prevent not only synthetic attacks but also real-world 

attacks by enforcing PACTight pointer integrity properties?

 

● How much performance and memory overhead does PACTight impose?
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Evaluation: Performance overhead
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Geometric mean: 

● 0.43% for 

PACTight-RET 

● 1.09% for 

PACTight-CFI+VTable+

RET

● 4.07% for 

PACTight-CPI



Evaluation: Memory overhead
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We ran the SPEC benchmarks with the PACTight-CPI protection:

● 19% memory overhead on average. 
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Conclusion

● PACTight is an efficient and robust mechanism utilizing ARM’s PA mechanism.

● Three security properties that PACTight enforces to ensure pointer integrity.

● We implemented PACTight with four defense mechanisms, protecting forward-edge, 

backward-edge, virtual function pointers, and sensitive pointers.

● PACTight is secure against real and synthesized attacks (more details in the paper) 

and has low performance and memory overhead 
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Thank you!
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