
Tightly Seal your Sensitive Pointers with
PACTight

Mohannad Ismail (Virginia Tech), Andrew Quach (Oregon State University), Christopher Jelesnianski
(Virginia Tech), Yeongjin Jang (Oregon State University), Changwoo Min (Virginia Tech)

ARM is becoming popular!

● More and more servers, data centers and

high-performance computers are using ARM.

● Greater importance to have effective and efficient

defenses for ARM in these environments.

2

Memory safety is a serious problem!

3

Microsoft Product CVEs Google OSS (Open Source
Software) Fuzz bugs

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/ https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

Outline

● Introduction

● Background and related work

● Introducing PACTight

● PACTight design

● PACTight defense mechanisms

● Evaluation

● Conclusion

4

Control-flow hijacking and use-after free attacks are critical!

Control-flow hijacking and use-after-free attacks are dangerous memory corruption attacks

5

Control-flow hijacking

Allocate Free

Use-after free

First Basic
Block

Control-flow
transfer

Adversary!

Illegal control
flow transfer
e.g., SYSTEM()!

Memory
object

DANGLING!

ARM Pointer Authentication

● Pointer Authentication Code (PAC) is generated by a cryptographic hash function.

● The PAC is then placed on the unused bits of the 64-bit pointer.

6

 AddressPAC
64-bits

40-bits

Hash

Hashed Text (PAC)

Plaintext (Address)

Key Salt

ARM Pointer Authentication

● PAC signing: The algorithm takes

the pointer and modifier, as well

as a key, and generates a PAC.

7

Cryptographic
algorithm

 AddressPAC

Address

Secret
Key

Modifier
Cryptographic

algorithm

 Address

 Address

Secret
Key

Modifier

PAC

● PAC authentication: The algorithm

takes the pointer with the PAC and

the modifier. The PAC is then

regenerated and compared with

the one on the passed pointer.

Key Hash Salt Key Hash Salt

ARM Pointer Authentication

● PAC signing: The algorithm takes

the pointer and modifier, as well

as a key, and generates a PAC.

8

Cryptographic
algorithm

 AddressPAC

Address

Secret
Key

Modifier
Cryptographic

algorithm

 Address

 Address

Secret
Key

Modifier

PAC

● PAC authentication: The algorithm

takes the pointer with the PAC and

the modifier. The PAC is then

regenerated and compared with

the one on the passed pointer.

0x2

Key Hash Salt Key Hash Salt

Current state-of-the-art PAC techniques

9

PARTS-CFI
Lilijestrand et. al
(USENIX SEC’19)

Protection scope PAC modifier

Return addresses
and indirect code

pointers

SP (Stack Pointer) + function id for return
addresses and type id for indirect code

pointers.

Return addresses Previous chained return address on the stack

Heap allocated
objects

A generated object-id

PACStack
Lilijestrand et. al
(USENIX SEC’21)

PTAuth
Farkhani et. al
(USENIX SEC’21)

Current state-of-the-art PAC techniques

10

PARTS-CFI
Lilijestrand et. al
(USENIX SEC’19)

PACStack
Lilijestrand et. al
(USENIX SEC’21)

PTAuth
Farkhani et. al
(USENIX SEC’21)

Protection scope PAC modifier

Return addresses
and indirect code

pointers

SP (Stack Pointer) + function id for return
addresses and type id for indirect code

pointers.

Return addresses Previous chained return address on the stack

Heap allocated
objects

A generated object-id

Current state-of-the-art PAC techniques

11

PARTS-CFI
Lilijestrand et. al
(USENIX SEC’19)

PACStack
Lilijestrand et. al
(USENIX SEC’21)

PTAuth
Farkhani et. al
(USENIX SEC’21)

Protection scope PAC modifier

Return addresses
and indirect code

pointers

SP (Stack Pointer) + function id for return
addresses and type id for indirect code

pointers.

Return addresses Previous chained return address on the stack

Heap allocated
objects

A generated object-id

Current state-of-the-art PAC techniques

12

PARTS-CFI
Lilijestrand et. al
(USENIX SEC’19)

PACStack
Lilijestrand et. al
(USENIX SEC’21)

PTAuth
Farkhani et. al
(USENIX SEC’21)

Protection scope PAC modifier

Return addresses
and indirect code

pointers

SP (Stack Pointer) + function id for return
addresses and type id for indirect code

pointers.

Return addresses Previous chained return address on the stack

Heap allocated
objects

A generated object-id

Limitations of state-of-the-art PAC techniques

● Reliance on a modifier that can be repeated, thus attackers can reuse the PAC

generated for one in the context of using the other. [PARTS-CFI SEC’19]

13

● Reliance on the presence of a forward-edge CFI technique with the PAC defense

mechanism. [PACStack SEC’21]

● Constrained threat model, defending only against attackers with just arbitrary write.

The defense is not effective if the attacker has arbitrary read.
[PTAuth SEC’21]

Outline

● Introduction

● Background and related work

● Introducing PACTight

● PACTight design

● PACTight defense mechanisms

● Evaluation

● Conclusion

14

PACTight Overview

We define three security properties of a pointer such that, if achieved, prevent pointers

from being tampered with.

15

● Unforgeability: A pointer should always point to its legitimate object.

● Non-copyability: A pointer can only be used when it is at its specific

legitimate location.

● Non-dangling: A pointer cannot be used after its object has been freed.

PACTight Overview

We define three security properties of a pointer such that, if achieved, prevent pointers

from being tampered with.

16

● Unforgeability: A pointer should always point to its legitimate object.

● Non-copyability: A pointer can only be used when it is at its specific

legitimate location.

● Non-dangling: A pointer cannot be used after its object has been freed.

PACTight Overview

We define three security properties of a pointer such that, if achieved, prevent pointers

from being tampered with.

17

● Unforgeability: A pointer should always point to its legitimate object.

● Non-copyability: A pointer can only be used when it is at its specific

legitimate location.

● Non-dangling: A pointer cannot be used after its object has been freed.

PACTight Overview

We define three security properties of a pointer such that, if achieved, prevent pointers

from being tampered with.

18

● Unforgeability: A pointer should always point to its legitimate object.

● Non-copyability: A pointer can only be used when it is at its specific

legitimate location.

● Non-dangling: A pointer cannot be used after its object has been freed.

Introducing PACTight

The three properties:

19

Introducing PACTight

The three properties:

20

Forged
Pointer

Pointer Object

Object

Forgeability

Another
objectPointer is

corrupted

Introducing PACTight

The three properties:

21

Forged
Pointer

Pointer Object

Object

Forgeability

Another
object

Copied
Pointer

Pointer Object

Pointer

Copyability

Object

Pointer is
corrupted

Pointer is
harvested
and copied

Introducing PACTight

The three properties:

22

Forged
Pointer

Pointer Object

Object

Forgeability

Another
object

Copied
Pointer

Pointer Object

Pointer

Copyability

Object
Freed
object

Pointer Object

Pointer

Dangling

Realloc’
d object

Pointer

or

Pointer is
corrupted

Pointer is
harvested
and copied

Pointer use
after free

Introducing PACTight

The three properties:

23

Forged
Pointer

Pointer Object

Object

Forgeability -> Generating valid PAC

Another
object

Copied
Pointer

Pointer Object

Pointer

Copyability -> Reuse valid pointer

Object
Freed
object

Pointer Object

Pointer

Dangling -> Reuse invalid pointer

Realloc’
d object

Pointer

or

Pointer is
corrupted

Pointer is
harvested
and copied

Pointer use
after free

Introducing PACTight: Goal

● The importance of these properties stems from the fact that to hijack control-flow,

at least one of these properties must be violated.

● PACTight tightly seals pointers and guarantees that a sealed pointer cannot be

forged, copied, and is not dangling.

● PACTight overcomes the limitations of previous approaches:
○ The non-copyability property prevents any PAC reuse.

○ PACTight protects all globals, stack variables and heap variables.

○ PACTight assumes a strong threat model that has both arbitrary read and write capabilities.

24

Outline

● Introduction

● Background and related work

● Introducing PACTight

● PACTight design

● PACTight defense mechanisms

● Evaluation

● Conclusion

25

PACTight Design: Enforcing the properties

● In order to enforce the three properties, PACTight relies on the PAC modifier.

● Any changes in either the modifier or the address result in a different PAC, detecting

the violation.

26

PACTight Design: Enforcing the properties

We propose to blend the address of a pointer (&p) and a random tag associated with a

memory object (tag(p)) to efficiently enforce the PACTight pointer integrity property

27

PACTight Design: Enforcing the properties

28

Cryptographic
algorithm

 AddressPAC

Address

Secret
Key

Modifier
&p ⨁ tag(p)

Signing

We propose to blend the address of a pointer (&p) and a random tag associated with a

memory object (tag(p)) to efficiently enforce the PACTight pointer integrity property

PACTight Design: Enforcing the properties

29

Cryptographic
algorithm

 AddressPAC

Address

Secret
Key

Modifier
&p ⨁ tag(p)

Cryptographic
algorithm

 Address

Address

Secret
Key

PAC

Modifier
&p ⨁ tag(p)

Signing Authentication

We propose to blend the address of a pointer (&p) and a random tag associated with a

memory object (tag(p)) to efficiently enforce the PACTight pointer integrity property

PACTight Design: Enforcing the properties

Unforgeability: The PAC mechanism includes the pointer as one of the inputs to generate

the PAC. If the pointer is forged, it will be detected at authentication.

30

Forged
PointerPointer Object Object

Another
object

 AddressPAC

Object

Forged Pointer (q = corrupted p = execve)Pointer (p)

Address
Authenticate Authenticate

Another
object

Modifier
&q ⨁ tag(q)

Modifier
&p ⨁ tag(p)

 execvePAC execve0x2

PACTight Design: Enforcing the properties

Non-copyability: PACTight adds the location of the pointer (&p) as part of the modifier.

Any change in the location by copying the pointer triggers an authentication fault.

31

Forged
PointerPointer Object Object

Copied
Pointer

 AddressPAC

Object

Copied Pointer (q = p)Pointer (p)

Address
Authenticate Authenticate

Modifier
&q ⨁ tag(q)

Modifier
&p ⨁ tag(p)

 AddressPAC Address0x2

Object

&q != &p

PACTight Design: Enforcing the properties

Non-dangling: PACTight uses a random tag to track the lifecycle of a memory object. The

lifecycle of a PACTight-sealed pointer is bonded to that of the object.

32

Pointer Object

 AddressPAC

Object

Dangling Pointer (freed p)Pointer (p)

Address
Authenticate Authenticate

Modifier
&p ⨁ tag(p)

Modifier
&p ⨁ tag(p)

 AddressPAC Address0x2

Realloc’d
object

Pointer

Pointer

Freed
object

or

Freed
object

INVALID TAG!

PACTight structure and overall design

● PACTight instruments programs to guarantee the three properties.

● PACTight automates its instrumentation in four different levels: forward-edge,

backward-edge, C++ VTable, and sensitive pointers

33

Source code

FP_t *p = malloc(8);
p = &func;
(*p)("Hello, PACTight");

Clang IR
PACTight

Instrumentation

Protected Binary
PACTight library

(compiler-rt)

Instrumented Program

FP_t *p = malloc(8);
p = &func;
pct_sign(&p);
pct_auth(&p, p);
(*p)("Hello, PACTight!");

Outline

● Introduction

● Background and related work

● Introducing PACTight

● PACTight design

● PACTight defense mechanisms

● Evaluation

● Conclusion

34

PACTight Defense Mechanisms

The PACTight compiler automatically instruments all globals, stack variables and heap

variables in a program, inserting the necessary PACTight APIs.

We implement four defense mechanisms:

● Control-Flow Integrity (forward edge protection)

● C++ VTable pointers protection

● Code Pointer Integrity (all sensitive pointer protection) [Kuznetsov et. al, OSDI 2014]

● Return address protection (backward edge protection)

35

PACTight Defense Mechanisms

The PACTight compiler automatically instruments all globals, stack variables and heap

variables in a program, inserting the necessary PACTight APIs.

We implement four defense mechanisms:

● Control-Flow Integrity (forward edge protection)

● C++ VTable pointers protection

● Code Pointer Integrity (all sensitive pointer protection) [Kuznetsov et. al, OSDI

2014]

● Return address protection (backward edge protection)

36

PACTight Defense Mechanisms: PACTight-CPI

● PACTight-CPI guarantees the PACTight pointer integrity properties for all sensitive
pointers.

● Sensitive pointers are all code pointers and all data pointers that point to code
pointers recursively.

● It authenticates the PAC on a sensitive pointer at legitimate sensitive sites. At all
other sites, the pointer is sealed so it cannot be abused.

● PACTight-CPI identifies all sensitive pointers using LLVM type information. It
recursively looks through all elements inside a composite type.

37

Outline

● Introduction

● Background and related work

● Introducing PACTight

● PACTight design

● PACTight defense mechanisms

● Evaluation

● Conclusion

38

Evaluation Questions

● How effectively can PACTight prevent not only synthetic attacks but also real-world

attacks by enforcing PACTight pointer integrity properties?

● How much performance and memory overhead does PACTight impose?

39

Evaluation Questions

● How effectively can PACTight prevent not only synthetic attacks but also real-world

attacks by enforcing PACTight pointer integrity properties?

● How much performance and memory overhead does PACTight impose?

40

Evaluation: Performance overhead

41

Geometric mean:

● 0.43% for

PACTight-RET

● 1.09% for

PACTight-CFI+VTable+

RET

● 4.07% for

PACTight-CPI

Evaluation: Memory overhead

42

We ran the SPEC benchmarks with the PACTight-CPI protection:

● 19% memory overhead on average.

Outline

● Introduction

● Background and related work

● Introducing PACTight

● PACTight design

● PACTight defense mechanisms

● Evaluation

● Conclusion

43

Conclusion

● PACTight is an efficient and robust mechanism utilizing ARM’s PA mechanism.

● Three security properties that PACTight enforces to ensure pointer integrity.

● We implemented PACTight with four defense mechanisms, protecting forward-edge,

backward-edge, virtual function pointers, and sensitive pointers.

● PACTight is secure against real and synthesized attacks (more details in the paper)

and has low performance and memory overhead

44

Thank you!

45

Mohannad Ismail
imohannad@vt.edu

https://github.com/cosmoss-jigu/pactight

Questions?

mailto:imohannad@vt.edu
https://github.com/cosmoss-jigu/pactight

Conclusion

● PACTight is an efficient and robust mechanism utilizing ARM’s PA mechanism.

● Three security properties that PACTight enforces to ensure pointer integrity.

● We implemented PACTight with four defense mechanisms, protecting forward-edge,

backward-edge, virtual function pointers, and sensitive pointers.

● PACTight is secure against real and synthesized attacks (more details in the paper)

and has low performance and memory overhead

46

Mohannad Ismail
imohannad@vt.edu

https://github.com/cosmoss-jigu/pactight

mailto:imohannad@vt.edu
https://github.com/cosmoss-jigu/pactight

