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Introduction
 Searchable encryption (SE) allows search/update operations on encrypted 

data
 State-of-the-art SE still leak significant information with many attacks 

shown
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Generic index-based SE framework
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Introduction
 Oblivious Random Access Machine (ORAM) can seal access pattern leakage but 

expensive in SE setting [N16]
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Hidden access pattern

 Passive ORAMs (storage-only server) is the most common and efficient ones
 O(log N) communication overhead (proven as tight lower bound [GO96, 

LN18])
 Significant delay and latency [SCE14]

High bandwidth 
and roundtrip

27 GB WikiDB:
• 100 - 1000x roundtrips (20 ms latency 
each)
• 0.4 – 7 GB data transmitted per query
• 7s – 1.7 hours delay per query with 
high-speed network (150 Mbps) 
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Motivation
 ORAM seems the best option to hide access pattern but very costly

 ORAM over the network results in significant delay due to the client’s limited 
bandwidth

 Is there any way to execute ORAM but not over the network?
 Use secure hardware!

 Trusted Execution Environment (TEE) becomes widely available (e.g., Intel-SGX)
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ORAM with secure hardware [GO96, SGF17, RFK+17, MLS+13] 
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Our Contributions
 POSUP: A new oblivious search and update platform design with Intel-SGX

 Harness and optimize the most suitable cryptographic primitives for secure 
hardware
 (Recursive) Circuit-ORAM, Oblivious Data Structures

 Respect secure hardware constraints
 Limited memory (95 MB for Intel-SGX)
 Prevent side-channel access pattern leakages

 Implementation and evaluation with large DB
 Code to be available soon (https://github.com/thanghoang/POSUP/) 
 Wikipedia Dataset: 27 GB, 7,075,917 keywords; 863,782,383 keyword-file pairsApproach Query 

latency*
Conventional ORAM+SE [N16] 7 s - 1.7 

hours
Process Entire DB in SGX 
[FBB+17]

131 s -  157 s

POSUP 0.5 s – 114 s

* for 99.5% fraction of keywords 

https://github.com/thanghoang/POSUP/
https://github.com/thanghoang/POSUP/
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Secure Enclaves [JSR+16]
 Intel-SGX provides an enclave with hardware-based isolated, encrypted and 

integrity-protected memory
 Prevent any execution outside the enclave from accessing enclave’s data 

6

SGX 
CPU

EPC
Memory

Untrusted 
component 

1

Enclave

Secret Data
…

X

Encrypted and integrity-protected  by

Untrusted 
component 

2

Untrusted 
component 

3

OCALL

ECALL



7Thang Hoang et al.

Circuit-ORAM [WCS15]
 Follows tree paradigm [SCS+11] with two main phases

1. Read: Entire path but only keep 1 block into the stash
2. Eviction: Push blocks to deeper levels as much as possible in a single scan

 Evict path: Deterministic, reverse lexicographic order
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Oblivious Data Structures [WNL+14] 
 Reduce the size of position map stored at the client

 Each node store the position map of its logical next node and so forth
 Only need to store the position map of the root(s)

1 2 3 4

7
6 4

3

2

1

5

bid Payload Next bid Next 
pid

1 … 2 5
2 … 3 7
3 … 4 3
4 … - -
5 … 7 1
6 … - -
7 … 6 2

5 7 6

Block 
ID

Path ID

1 2
5 4

Position map

ORAM block 
structure:



9Thang Hoang et al.

POSUP Setup
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POSUP Update
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POSUP Search
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Hiding side-channel access pattern
 TW is a hash table

 Linear scan (and loaded into SGX by 95MB chunks) to prevent which slots are 
accessed

 Stash is stored in untrusted memory region 
 Linear scan per block pushed/fetched to prevent which slot is accessed

 Conditional execution (if/else st.): Distinguishable access pattern due to execution 
branches
 Use CMOV and SETE/SETG/SETGE for oblivious comparison and update [OSF+16] 
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Experiment
 Hardware: Intel E3-1230 CPU (SGX-supported), 16 GB RAM, 512 GB SSD. 
 Dataset: 27 GB Wikipedia English corpus with 5,554,594 files; 7,075,917 

keywords; 863,782,383 keyword-file pairs; Index size: 6.9 GB
 Network: 18 ms latency, 150 Mbps throughput 
 POSUP Parameters:

 Path-ORAM and Circuit-ORAM with stash size |S| = 80
 Block size: 3 KB for file blocks, 512 B for index blocks

 POSUP counterparts for comparison:
 Path-ORAM+SE+ODS in client-server network setting
 Process entire IDX and DB inside SGX (95-MB chunks loaded sequentially) 
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Experiment: Search  
 POSUP is 74× - 232× faster 

than its counterparts for 
99.5% fraction of keywords
 Minimal BW Usage
 4.5× - 245× less 

computation delay than 
EntireSGX
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Experiment: Update (single file)
 For update, POSUP is 40× faster than 

ORAM-ODS-SE and up to approx. 1,000× 
faster than EntireSGX

 Remember Lazy add/delete: Access 1 
block
 Both ORAM-ODS-SE and POSUP

 EntireSGX decrypts and re-encrypts the 
entire DB and IDX per update

 Storage: |TW| + |ODS-IDX| + |ODS-DB|+|
posf| 
 Total: 175 GB (using Circuit-ORAM)
 27 GB Wikiset
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Conclusion and Further Direction
 POSUSP: An SGX-supported oblivious search and update platform

 Efficient composition of crypto primitives in the context of secure hardware
 With the support of secure hardware, oblivious search/update become much more 

practical

Limitation:
 Support only basic single-keyword search, multi-keyword can be done but with 

high cost
 Linear scan of Keyword hash table (210 msec, 188 MB)

Open Research Question:
 More efficient and diverse oblivious queries (e.g., conjunctive/boolean/ranged)
 Efficient oblivious hash table for keyword
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Thank you for your 
attention!

The code will be available soon at: https://github.com/thanghoang/POSUP/  

?
Contacts:  (hoangm@mail.usf.edu, attilaayavuz@usf.edu)

https://github.com/thanghoang/POSUP/
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Experiment – Microbenchmark 
 With Circuit-ORAM, POSUP takes 1 ms to 

access a 3 KB block in 107 GB DB
 Path-ORAM is slower than Circuit-ORAM for 

SGX since entire stash is loaded multiple 
times

 File position map access:
 I/O access is low because it is stored on 

RAM memory
 Enclave process is high because it 

decrypts/re-encrypt multiple recursive 
levels
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