
Hardware-Supported ORAM In Effect: Practical
Oblivious Search and Update on Very Large Dataset

1

Thang Hoang†,*, Muslum O. Ozmen†,*, Yeongjin Jang‡, Attila A. Yavuz†,*

† University of South Florida, Tampa, FL
‡ Oregon State University, Corvallis, OR

Privacy-Enhancing Technologies Symposium (PETS) 2019

* Part of work done while the first, second and last authors were at Oregon State University

Thang Hoang et al.

Introduction
 Searchable encryption (SE) allows search/update operations on encrypted

data
 State-of-the-art SE still leak significant information with many attacks

shown

2
Generic index-based SE framework

Encrypted
Index

Encrypte
d Files

Client

Server
“0x12dhabc12”: c1, c2,
c3
“0x918a99acb”: c4, c2,
c6
….

c1
c2
c3
c4
c5
c6
…

Search
“hello”

Gen 0x12dhabc12

f1,f2,
f3

Dec

search pattern
leakage

File-access pattern, update pattern
leakage

Forward-privacy,
backward-privacy
leakage

Statistical inference
attacks [IKK12, LZW+14,

ZKP16]

Thang Hoang et al.

Introduction
 Oblivious Random Access Machine (ORAM) can seal access pattern leakage but

expensive in SE setting [N16]

3

Encrypted
Index

Encrypte
d Files

Client

Server
“hello”

ORAM1, 2, 3

1, 2, 3
ORAMf1, f2, f3

Hidden access pattern

Hidden access pattern

 Passive ORAMs (storage-only server) is the most common and efficient ones
 O(log N) communication overhead (proven as tight lower bound [GO96,

LN18])
 Significant delay and latency [SCE14]

High bandwidth
and roundtrip

27 GB WikiDB:
• 100 - 1000x roundtrips (20 ms latency
each)
• 0.4 – 7 GB data transmitted per query
• 7s – 1.7 hours delay per query with
high-speed network (150 Mbps)

4Thang Hoang et al.

Motivation
 ORAM seems the best option to hide access pattern but very costly

 ORAM over the network results in significant delay due to the client’s limited
bandwidth

 Is there any way to execute ORAM but not over the network?
 Use secure hardware!

 Trusted Execution Environment (TEE) becomes widely available (e.g., Intel-SGX)

Client
ORAM

Server

Untrusted
Storage

request

answer

ORAM with secure hardware [GO96, SGF17, RFK+17, MLS+13]

5Thang Hoang et al.

Our Contributions
 POSUP: A new oblivious search and update platform design with Intel-SGX

 Harness and optimize the most suitable cryptographic primitives for secure
hardware
 (Recursive) Circuit-ORAM, Oblivious Data Structures

 Respect secure hardware constraints
 Limited memory (95 MB for Intel-SGX)
 Prevent side-channel access pattern leakages

 Implementation and evaluation with large DB
 Code to be available soon (https://github.com/thanghoang/POSUP/)
 Wikipedia Dataset: 27 GB, 7,075,917 keywords; 863,782,383 keyword-file pairsApproach Query

latency*
Conventional ORAM+SE [N16] 7 s - 1.7

hours
Process Entire DB in SGX
[FBB+17]

131 s - 157 s

POSUP 0.5 s – 114 s

* for 99.5% fraction of keywords

https://github.com/thanghoang/POSUP/
https://github.com/thanghoang/POSUP/

Thang Hoang et al.

Secure Enclaves [JSR+16]
 Intel-SGX provides an enclave with hardware-based isolated, encrypted and

integrity-protected memory
 Prevent any execution outside the enclave from accessing enclave’s data

6

SGX
CPU

EPC
Memory

Untrusted
component

1

Enclave

Secret Data
…

X

Encrypted and integrity-protected by

Untrusted
component

2

Untrusted
component

3

OCALL

ECALL

7Thang Hoang et al.

Circuit-ORAM [WCS15]
 Follows tree paradigm [SCS+11] with two main phases

1. Read: Entire path but only keep 1 block into the stash
2. Eviction: Push blocks to deeper levels as much as possible in a single scan

 Evict path: Deterministic, reverse lexicographic order

Position map
Block

ID
Path ID

1 2
2 5
3 7
4 3
5 4
6 2
7 1

Real block Dummy block

7
6 4

3

2

1

5

Path ID 1 2 3 4 5 6 7
 8

Bucket Size Z = 2

Stash

8Thang Hoang et al.

Oblivious Data Structures [WNL+14]
 Reduce the size of position map stored at the client

 Each node store the position map of its logical next node and so forth
 Only need to store the position map of the root(s)

1 2 3 4

7
6 4

3

2

1

5

bid Payload Next bid Next
pid

1 … 2 5
2 … 3 7
3 … 4 3
4 … - -
5 … 7 1
6 … - -
7 … 6 2

5 7 6

Block
ID

Path ID

1 2
5 4

Position map

ORAM block
structure:

9Thang Hoang et al.

POSUP Setup
1. Extract
keywords

𝑤1 ,…,𝑤𝑚

2. Build Index

3. Construct
Linked-list ORAM

Blocks

1

…

𝑛 ′

Untrusted
Memory

Enclave

𝑥

…

𝑛 ′ ′

…

Hash
value

bid pi
d

0x123abc 1 2
… … …

0x145ade 5 4

TW :

: Recursive ORAM structure

Serve
r

𝑓 1

𝑓 𝑛
…………………\

4. Build Pos
Map

5. Build ORAM
tree with ODS ODS-IDX

ODS-DB

TW
pos f

Thang Hoang et al.

POSUP Update

10

Untrusted
Memory

ODS-IDX

ODS-DB

TW

pos f

Enclave

Client

𝑓 𝑗

Extract keywords

𝑤1 ,…,𝑤𝑚

𝑓 𝑗 ,𝑤1 ,…,𝑤𝑚

{b id𝑖 , pid 𝑖 \}𝑖=1
𝑚

ODS
Controller

𝑗 Recursive
ORAM

Controller

ODS
Controller

b id ′ , pid ′

⟨ b id′ , pid ′ ⟩ , 𝑓 𝑗

{b id𝑖 , pid 𝑖 \}𝑖=1
𝑚 , 𝑗 Add j into each block

Update blocks of

Get ID of first block of each

Get ID of first block of

Serve
r

(Lazy) deletion: add (j,0)
Addition: add (j,1)

Fetch entire TW into enclave

11Thang Hoang et al.

POSUP Search

Client

𝑤

Untrusted
Memory

ODS-IDX

ODS-DB

pos f

Enclave
𝑤

bid , pid

Recursive
ORAM

Controller

ODS
Controller

\{b id𝑖
′ , pid 𝑖

′ \}𝑖=1
𝑛

(𝑓 𝑗 1,…, 𝑓 𝑗𝑛)

Get matching files

Get ID of first block of

Get file IDs matching
with w

(𝑗1 ,…, 𝑗𝑛)
Get path of first block of each

(𝑓 𝑗 1,…, 𝑓 𝑗𝑛)

Serve
r

Garbage collection:
• kw-f pairs towards the head is latest
• Delete kw-f pairs towards the tail if

repeated

TW

ODS
Controller

Fetch entire TW into enclave

12Thang Hoang et al.

Hiding side-channel access pattern
 TW is a hash table

 Linear scan (and loaded into SGX by 95MB chunks) to prevent which slots are
accessed

 Stash is stored in untrusted memory region
 Linear scan per block pushed/fetched to prevent which slot is accessed

 Conditional execution (if/else st.): Distinguishable access pattern due to execution
branches
 Use CMOV and SETE/SETG/SETGE for oblivious comparison and update [OSF+16]

13Thang Hoang et al.

Experiment
 Hardware: Intel E3-1230 CPU (SGX-supported), 16 GB RAM, 512 GB SSD.
 Dataset: 27 GB Wikipedia English corpus with 5,554,594 files; 7,075,917

keywords; 863,782,383 keyword-file pairs; Index size: 6.9 GB
 Network: 18 ms latency, 150 Mbps throughput
 POSUP Parameters:

 Path-ORAM and Circuit-ORAM with stash size |S| = 80
 Block size: 3 KB for file blocks, 512 B for index blocks

 POSUP counterparts for comparison:
 Path-ORAM+SE+ODS in client-server network setting
 Process entire IDX and DB inside SGX (95-MB chunks loaded sequentially)

14Thang Hoang et al.

Experiment: Search
 POSUP is 74× - 232× faster

than its counterparts for
99.5% fraction of keywords
 Minimal BW Usage
 4.5× - 245× less

computation delay than
EntireSGX

15Thang Hoang et al.

Experiment: Update (single file)
 For update, POSUP is 40× faster than

ORAM-ODS-SE and up to approx. 1,000×
faster than EntireSGX

 Remember Lazy add/delete: Access 1
block
 Both ORAM-ODS-SE and POSUP

 EntireSGX decrypts and re-encrypts the
entire DB and IDX per update

 Storage: |TW| + |ODS-IDX| + |ODS-DB|+|
posf|
 Total: 175 GB (using Circuit-ORAM)
 27 GB Wikiset

16Thang Hoang et al.

Conclusion and Further Direction
 POSUSP: An SGX-supported oblivious search and update platform

 Efficient composition of crypto primitives in the context of secure hardware
 With the support of secure hardware, oblivious search/update become much more

practical

Limitation:
 Support only basic single-keyword search, multi-keyword can be done but with

high cost
 Linear scan of Keyword hash table (210 msec, 188 MB)

Open Research Question:
 More efficient and diverse oblivious queries (e.g., conjunctive/boolean/ranged)
 Efficient oblivious hash table for keyword

17Thang Hoang et al.

Thank you for your
attention!

The code will be available soon at: https://github.com/thanghoang/POSUP/

?
Contacts: (hoangm@mail.usf.edu, attilaayavuz@usf.edu)

https://github.com/thanghoang/POSUP/

18Thang Hoang et al.

References
[N16] Naveed, Muhammad. "The Fallacy of Composition of Oblivious RAM and Searchable Encryption." IACR Cryptology ePrint
Archive 2015 (2015): 668.
[SCE14] Stefanov, Emil, Charalampos Papamanthou, and Elaine Shi. "Practical Dynamic Searchable Encryption with Small
Leakage." In NDSS, vol. 71, pp. 72-75. 2014.
[GO96] Goldreich, Oded, and Rafail Ostrovsky. "Software protection and simulation on oblivious RAMs." Journal of the ACM
(JACM) 43, no. 3 (1996): 431-473.
[LN18] Larsen, Kasper Green, and Jesper Buus Nielsen. "Yes, there is an oblivious RAM lower bound!." In Annual International
Cryptology Conference, pp. 523-542. Springer, Cham, 2018.
[WCS15] Wang, Xiao, Hubert Chan, and Elaine Shi. "Circuit oram: On tightness of the goldreich-ostrovsky lower bound."
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 850-861. ACM, 2015.
[SCS+11] Shi, Elaine, T-H. Hubert Chan, Emil Stefanov, and Mingfei Li. "Oblivious RAM with O ((logN) 3) worst-case cost."
In International Conference on The Theory and Application of Cryptology and Information Security, pp. 197-214. Springer, Berlin,
Heidelberg, 2011.
[WNL+14] Wang, Xiao Shaun, Kartik Nayak, Chang Liu, T. H. Chan, Elaine Shi, Emil Stefanov, and Yan Huang. "Oblivious data
structures." In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 215-226. ACM,
2014.
[ZKP16] Zhang, Yupeng, Jonathan Katz, and Charalampos Papamanthou. "All your queries are belong to us: The power of file-
injection attacks on searchable encryption." In 25th {USENIX} Security Symposium ({USENIX} Security 16), pp. 707-720. 2016.
[LZW+14] Liu, Chang, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan. "Search pattern leakage in searchable encryption: Attacks
and new construction." Information Sciences 265 (2014): 176-188.
[IKK12] Islam, Mohammad Saiful, Mehmet Kuzu, and Murat Kantarcioglu. "Access Pattern disclosure on Searchable Encryption:
Ramification, Attack and Mitigation." In Ndss, vol. 20, p. 12. 2012.

19Thang Hoang et al.

References
[SGF17] Sasy, Sajin, Sergey Gorbunov, and Christopher W. Fletcher. "ZeroTrace: Oblivious Memory Primitives from Intel
SGX." IACR Cryptology ePrint Archive 2017 (2017): 549.
[RFK+17] Ren, Ling, Christopher W. Fletcher, Albert Kwon, Marten Van Dijk, and Srinivas Devadas. "Design and implementation
of the ascend secure processor." IEEE Transactions on Dependable and Secure Computing 16, no. 2 (2017): 204-216.
[MLS+13] Maas, Martin, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Kubiatowicz, and Dawn Song.
"Phantom: Practical oblivious computation in a secure processor." In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pp. 311-324. ACM, 2013.
[FBB+17] Fuhry, Benny, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum, and Ahmad-Reza Sadeghi.
"HardIDX: Practical and secure index with SGX." In IFIP Annual Conference on Data and Applications Security and Privacy, pp.
386-408. Springer, Cham, 2017.
[JSR+16] Johnson, Simon, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. "Intel® software guard extensions:
Epid provisioning and attestation services." White Paper 1 (2016): 1-10.
[OSF+16] Ohrimenko, Olga, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa.
"Oblivious multi-party machine learning on trusted processors." In 25th {USENIX} Security Symposium ({USENIX} Security 16),
pp. 619-636. 2016.

20Thang Hoang et al.

Experiment – Microbenchmark
 With Circuit-ORAM, POSUP takes 1 ms to

access a 3 KB block in 107 GB DB
 Path-ORAM is slower than Circuit-ORAM for

SGX since entire stash is loaded multiple
times

 File position map access:
 I/O access is low because it is stored on

RAM memory
 Enclave process is high because it

decrypts/re-encrypt multiple recursive
levels

	Hardware-Supported ORAM In Effect: Practical Oblivious Search a
	Introduction
	Introduction (2)
	Motivation
	Our Contributions
	Secure Enclaves [JSR+16]
	Circuit-ORAM [WCS15]
	Oblivious Data Structures [WNL+14]
	POSUP Setup
	POSUP Update
	POSUP Search
	Hiding side-channel access pattern
	Experiment
	Experiment: Search
	Experiment: Update (single file)
	Conclusion and Further Direction
	Thank you for your attention!
	References
	References (2)
	Experiment – Microbenchmark

